ATRT-01 S3 and ATRT-01B S3 SINGLE PHASE TRANSFORMER TURNS-RATIO METERS

USER'S MANUAL

Vanguard Instruments Company, Inc.

1520 S. Hellman Ave. Ontario, California 91761, USA

TEL: (909) 923-9390 FAX: (909) 923-9391 March 2014 Revision 1.2

SAFETY SUMMARY

This manual applies to both the ATRT-01 S3 and ATRT-01B S3 current transformer turns-ratio meters. The operating procedures are virtually the same for both models, and any differences are clearly described where applicable.

FOLLOW EXACT OPERATING PROCEDURES

Any deviation from procedures described in this User's Manual may create one or more safety hazards, damage the ATRT-01/01B S3, damage the test transformer, or cause errors in the test results. Vanguard Instruments Company, Inc. assumes no liability for unsafe or improper use of the ATRT-01/01B S3.

SAFETY WARNINGS AND CAUTIONS

The ATRT-01/01B S3 shall be used only by **trained operators**. All transformers under test shall be **off-line** and **fully isolated**. Do not perform test procedures or service unless another person is also present who is capable of rendering aid and resuscitation.

MAINTENANCE AND REPAIR

To avoid the risk of introducing additional or unknown hazards, do not install substitute parts or perform any unauthorized modification to any ATRT-01/01B S3 test unit. To ensure that all designed safety features are maintained, **repairs and maintenance must be performed only by Vanguard Instruments Company factory personnel or by an authorized repair service provider**. Unauthorized modifications can cause safety hazards and will void the manufacturer's warranty.

WARNING

Do not remove test leads during a test. Failure to heed this warning can result in electrical shock to personnel and damage to the equipment.

POWER SUPPLY

Always connect the ATRT-01/01B S3 to an AC receptacle with protective ground.

Always **check the voltage setting** of the unit before plugging in to power. Failure to heed this warning may damage the device.

REPLACEMENT FUSES

The ATRT-01/01B S3 uses a 250V/3A Fast Blow fuse (F3A 250V).

ACCESSORIES AND REPLACEMENT PARTS

The ATRT-01/01B S3 must be used with genuine Vanguard cables and accessories.

TABLE OF CONTENTS

CONVENTIO	NS USED IN THIS DOCUMENT	. 1
1.0 INTR	DDUCTION	. 2
1.1 Ge	neral Description and Features	. 2
1.2 Te	chnical Specifications	. 4
1.2.1.	ATRT-01 S3 Technical Specifications	. 4
1.2.2.	ATRT-01B S3 Technical Specifications	. 5
1.2.3.	Controls and Indicators	. 6
2.0 PRE-7	EST SETUP	. 9
2.1 AT	RT-01 S3 Operating Voltage	. 9
2.2 AT	RT-01B S3 Operating Power	. 9
2.3 LC	O Screen Contrast Control	. 9
3.0 OPER	ATING PROCEDURES	10
3.1 AT	RT Transformer Connection Diagrams	10
3.2 Set	ting the Test Voltage	14
3.3 Set	ting the Date and Time	16
3.4 Set	ting the Interface Language	17
3.5 Set	ting the Frequency (ATRT-01B S3 Only)	18
3.6 Pe	forming Tests	19
3.6.1.	Entering Test Record Header Information	19
3.6.2.	Testing a Single Phase Transformer	23
3.6.3.	Testing a Three Phase Transformer	28
3.7 Wo	orking With Test Records	36
3.7.1.	Viewing the Contents of the Working Memory	36
3.7.2.	Saving Test Results to a Test Record	37
3.7.3.	Restoring a Test Record From Flash EEPROM	39
3.7.4.	Restoring a Test Record From a USB Flash Drive	43
3.7.5.	Copying Test Records to a USB Flash Drive	46
3.7.6.	Viewing the Test Record Directory	49
3.7.7.	Erasing Test Records from the Flash EEPROM	51
3.7.8.	Erasing Test Records from a USB Flash Drive	56
3.8 Us	ng the Turns Ratio Calculator	59
APPENDIX A	- TRANSFORMER VECTOR GROUP CODES	62
APPENDIX B	- Common ANSI Transformer Descriptions	63
APPENDIX C	– CEI/IEC 60076-1 Transformer Descriptions	71
APPENDIX D	- Australian Std.2374 Transformer Descriptions	78

LIST OF TABLES

Table 1. ATRT-01 S3 Technical Specifications	4
Table 2. ATRT-01B S3 Technical Specifications	5
Table 3. Functional Descriptions of ATRT-01 S3 Controls and Indicators	7
Table 4. Functional Descriptions of ATRT-01B S3 Controls and Indicators	8

LIST OF FIGURES

Figure 1. ATRT-01 S3 Controls and Indicators	7
Figure 2. ATRT-01B S3 Controls and Indicators	8
Figure 3. Typical Single-Phase Transformer Connection	. 10
Figure 4. Typical Auto Transformer Connection	. 11
Figure 5. Typical CT Connection	. 12
Figure 6. Typical Bushing CT Connection on a Single Transformer	. 13

CONVENTIONS USED IN THIS DOCUMENT

This document uses the following conventions:

- The general term "ATRT" is used in this manual to refer to the ATRT-01 S3 and ATRT-01B S3.
- A key, switch, or knob on the ATRT is indicated as [KEY], [SWITCH], [KNOB].
- Menu names are referenced as "MENU NAME"
- ATRT screen output is shown as:

• When instructions are provided, the menu item that should be selected is outlined with a rectangle as shown below (option 3 should be selected):

1.	OPTION	1	
2.	OPTION	2	
3.	OPTION	3	
4.	OPTION	4	
5.	OPTION	5	

• Warning messages are indicated as:

• Important notes are indicated as:

1.0 INTRODUCTION

1.1 General Description and Features

The ATRT-01 S3 is Vanguard's fourth generation, micro-processor based, single phase, automatic transformer turns-ratio tester. This portable test unit is available in two models, the ATRT-01 S3 (line power only), and the ATRT-01B S3 (rechargeable-battery powered).

The ATRT-01 S3 uses the IEEE C57.12.90 measuring method to determine the transformer turns-ratio. The transformer turns-ratio is determined by precisely measuring the voltages across the unloaded transformer windings. The ATRT-01 S3's measuring circuitry self adjusts before each measurement to ensure turns-ratio accuracy. Two selectable test voltages, 4Vac and 40Vac, offer flexibility in testing different types of transformers.

The ATR-01 S3 can measure turns-ratios ranging from 0.8 to 15,000 and can be used to test voltage regulators, power transformers, current transformers (CT), and potential transformers (PT). The ATRT-01 S3 also measures and displays transformer-winding excitation current, winding polarity, and winding phase angle. Test results are displayed on a back-lit LCD screen (128 x 64 pixels) that is viewable in bright sunlight and low-light conditions.

In addition to measuring a transformer's turns-ratio, the transformer's name plate voltages can also be entered, and the ATRT-01 S3 will then display the turns-ratio percentage error. This convenient feature eliminates any user-calculation errors when testing transformers.

When testing a 3-phase transformer, the ATRT-01 S3 provides connection information (H and X test leads to the transformer bushings) for phase A, B and C tests. The three phase test results (turns-ratio, excitation current, winding polarity, phase-angle, and percentage error) are displayed on the LCD screen.

User Interface

The ATRT-01 S3 features a back-lit LCD screen (128 x 64 pixels) that is viewable in direct sunlight and low-light levels. A rugged 16-key membrane keypad is used to enter test information and to operate the unit.

Test Record Storage

The ATRT-01 S3 can store 128 records of 33 readings internally, and up to 999 test records on an external USB Flash drive. Test records can be recalled using the included Transformer Analysis PC software.

Computer Interface

A Windows[®]-based (XP/Vista/7) Transformer Analysis Software is provided with each unit and can be used to remotely control the ATRT-01 S3 via the RS-232C port. Using the Transformer Analysis software, the user can retrieve test records (from the ATRT-01 S3's memory or a USB Flash drive), analyze test results, and print test results on a desktop printer. Test results are automatically exported to PDF, Excel, and XML formats.

Battery Power for Exceptional Portability

The ATRT-01B S3 is powered by a 6-volt, 7 ampere-hour, lead acid battery. This high capacity battery, coupled with the ATRT-01B S3's low power consuming circuitry, allows the unit to be used continuously for up to 4 hours per charge. A built-in charger allows the unit to be used during charging.

1.2 Technical Specifications

1.2.1. ATRT-01 S3 Technical Specifications

Table 1. ATRT-01 S3 Technical Specifications

TYPE	Transformer Turns Ratio Tester	
PHYSICAL SPECIFICATIONS	Dimensions: 12" x 10" x 8" (30.4 cm x 25.4 cm x 20.3 cm) Weight: 8 lbs (3.6 Kg)	
INPUT POWER	120 Vac ±10% or 240 Vac ±10% (Selectable), 50/60 Hz Transient Category II	
MEASURING METHOD	ANSI/IEEE C57.12.90	
RATIO MEASURING RANGE	0.8 - 15,000 (5 digit resolution)	
TURNS-RATIO ACCURACY	40 Vac: 0.8-1,999 (0.1%), 2,000-3,999 (0.25%), 4,000-15,000 (1%) 4 Vac: 0.8-1,999 (0.1%), 2,000-3,999 (0.25%), 4,000-15,000 (2%)	
TEST VOLTAGE	4 Vac @ 1.0A, 40 Vac @ 0.6A	
PHASE ANGLE MEASUREMENT	0 - 360 degrees, Accuracy ±0.2 degree (±1 digit)	
POLARITY READING	In-Phase or Out-of-Phase indication	
EXCITATION CURRENT READING RANGE	0-2 Amperes, Accuracy: 2% of reading (±1 mA)	
DISPLAY	Back-lit LCD (128 x 64 pixels), viewable in direct sunlight and low light levels	
COMPUTER INTERFACE	RS-232C	
PC SOFTWARE	Windows XP/Vista/7 Transformer Analysis Software (included with purchase)	
INTERNAL TEST RECORD STORAGE	128 records of 33 readings	
EXTERNAL TEST RECORD STORAGE	Up to 999 test records on external USB Flash drive.	
SAFETY	Designed to meet IEC 61010 (1995), UL 61010A-1, and CSA-C22.2 standards	
IP Rating	IP32, Pollution Degree 2	
IP Rating ENVIRONMENT	IP32, Pollution Degree 2 Operating: -10°C to 50°C (15°F to +122°F) Storage: (-30°C to 70°C (-22°F to +158°F)	
HUMIDITY (MAX)	IP32, Pollution Degree 2 Operating: -10°C to 50°C (15°F to +122°F) Storage: (-30°C to 70°C (-22°F to +158°F) 90% RH @ 40° C (104° F) non-condensing	
IP Rating ENVIRONMENT HUMIDITY (MAX) ALTITUDE (MAX)	IP32, Pollution Degree 2 Operating: -10°C to 50°C (15°F to +122°F) Storage: (-30°C to 70°C (-22°F to +158°F) 90% RH @ 40° C (104° F) non-condensing 2000m (6562 ft) to full safety specifications	
HUMIDITY (MAX) ALTITUDE (MAX) CABLES	IP32, Pollution Degree 2Operating: -10°C to 50°C (15°F to +122°F) Storage: (-30°C to 70°C (-22°F to +158°F)90% RH @ 40° C (104° F) non-condensing 2000m (6562 ft) to full safety specificationsOne 15 ft. (4.6m) Single phase cable, one power cord, one cable bag	
IP Rating ENVIRONMENT HUMIDITY (MAX) ALTITUDE (MAX) CABLES OPTIONS	IP32, Pollution Degree 2 Operating: -10°C to 50°C (15°F to +122°F) Storage: (-30°C to 70°C (-22°F to +158°F) 90% RH @ 40° C (104° F) non-condensing 2000m (6562 ft) to full safety specifications One 15 ft. (4.6m) Single phase cable, one power cord, one cable bag Transportation Case (Can hold unit and cables)	

The above specifications are valid at nominal operating voltage and at a temperature of 25°C (77°F). Specifications may change without prior notice.

NOTE

1.2.2. ATRT-01B S3 Technical Specifications

Table 2. ATRT-01B S3 Technical Specifications

TYPE	Transformer Turns Ratio Tester
PHYSICAL SPECIFICATIONS	Dimensions: 12" x 10" x 8" (30.4 cm x 25.4 cm x 20.3 cm) Weight: 9 lbs (4.3 Kg)
INPUT POWER	90 to 240 Vac ±10%, 50/60 Hz Battery: SLA battery delivering up to 4 hours of continuous operation per charge. Transient Category II
MEASURING METHOD	ANSI/IEEE C57.12.90
RATIO MEASURING RANGE	0.8 - 15,000 (5 digit resolution)
TURNS-RATIO ACCURACY	40 Vac: 0.8-1,999 (0.1%), 2,000-3,999 (0.25%), 4,000-15,000 (1%) 4 Vac: 0.8-1,999 (0.1%), 2,000-3,999 (0.25%), 4,000-15,000 (2%)
TEST VOLTAGE	4 Vac @ 500mA, 40 Vac @ 70mA
PHASE ANGLE MEASUREMENT	0 - 360 degrees, Accuracy ±0.2 degree (±1 digit)
POLARITY READING	In-Phase or Out-of-Phase indication
EXCITATION CURRENT READING RANGE	0-2 Amperes, Accuracy: 2% of reading (±1 mA)
DISPLAY	Back-lit LCD (128 x 64 pixels), viewable in direct sunlight and low light levels
COMPUTER INTERFACE	RS-232C
PC SOFTWARE	Windows XP/Vista/7 Transformer Analysis Software (included with purchase)
INTERNAL TEST RECORD STORAGE	128 records of 33 readings
EXTERNAL TEST RECORD STORAGE	Up to 999 test records on external USB Flash drive.
SAFETY	Designed to meet IEC 61010 (1995), UL 61010A-1, and CSA-C22.2 standards
IP Rating	IP32, Pollution Degree 2
ENVIRONMENT	Operating: -10°C to 50°C (15°F to +122°F) Storage: (-30°C to 70°C (-22°F to +158°F)
HUMIDITY (MAX)	90% RH @ 40° C (104° F) non-condensing
ALTITUDE (MAX)	2000m (6562 ft) to full safety specifications
CABLES	One 15 ft. (4.6m) Single phase cable, one power cord, one cable bag
OPTIONS	Transportation Case (Can hold unit and cables)
WARRANTY	One year on parts and labor

The above specifications are valid at nominal operating voltage and at a temperature of 25°C (77°F). Specifications may change without prior notice.

1.2.3. Controls and Indicators

The ATRT-01 S3 and ATRT-01B S3 controls and indicators are shown in Figure 1 and Figure 2, respectively. A leader line with an index number points to each control and indicator, which is cross-referenced to a functional description in the corresponding table. The purpose of the controls and indicators may seem obvious, but users should familiarize themselves with them before using the ATRT. Accidental misuse of the controls will usually cause no serious harm. Users should also familiarize themselves with the safety summary information found on the front page of this User's Manual.

Figure 1. ATRT-01 S3 Controls and Indicators

ltem Number	Panel Markings	Functional Description
1	USB MEM	USB Flash drive interface
2	RS-232C	RS-232C computer interface port
3		Back-lit LCD screen (128 x 64 pixels), viewable in direct sunlight and low light levels
4		H and X lead connector (16-pin male).
5		Voltage selection switch
6	120/240 Vac, 2A, 50-60Hz Fuse: F3A250V	Input power connector and fused power switch with third-wire safety ground.
7		Rugged alpha-numeric keypad

Figure 2. ATRT-01B S3 Controls and Indicators

ltem Number	Panel Markings	Functional Description
1	USB MEM	USB Flash drive interface
2	RS-232C	RS-232C computer interface port
3		Back-lit LCD screen (128 x 64 pixels), viewable in bright sunlight and low light levels
4		H and X lead connector (16-pin male).
5	120-240 Vac, 2A, 50-60Hz Fuse: F3A250V	Input power connector
6		Rugged alpha-numeric keypad
7	CHARGER	Battery charging indicator. LED lights up when battery is being charged.
8	POWER	Power switch

2.0 PRE-TEST SETUP

2.1 ATRT-01 S3 Operating Voltage

The ATRT-01 S3 can be operated from 120 Vac $\pm 10\%$ or 240 Vac $\pm 10\%$. The power voltage can be set using the voltage selector switch on the front panel (see Figure 1, item #5)

• Always check the voltage setting of the unit before plugging in to power.

• Always connect the ATRT-01 S3 to an AC receptacle with protective ground.

2.2 ATRT-01B S3 Operating Power

The ATRT-01B S3 is powered by a rechargeable (6 Vdc / 7 AH) sealed lead acid gel battery. The unit can operate continuously for up to 6 hours between charges. It can also be used while charging. Plugging the ATRT-01B S3 into an ac power outlet after the battery is fully charged will not damage the battery.

- It is recommended that the ATRT-01B S3 be plugged into an ac outlet when it is not in use.
- The ATRT-01B S3 uses the Genesis model NP7-6 battery. It can also be replaced with the Panasonic model LC-R122R2PU battery.

2.3 LCD Screen Contrast Control

To increase the LCD screen contrast, press and hold the [\land **Contrast**] key for two seconds. Release the button when the desired contrast level has been reached.

To decrease the LCD screen contrast, press and hold the [\lor **Contrast**] key for two seconds. Release the button when the desired contrast level has been reached.

For the ATRT-01B S3, the back-light turns off after 30 seconds of operation to conserve power. Press any key on the keypad to re-light the back-light.

3.0 OPERATING PROCEDURES

3.1 ATRT Transformer Connection Diagrams

Figure 3. Typical Single-Phase Transformer Connection

Figure 4. Typical Auto Transformer Connection

Figure 5. Typical CT Connection

Figure 6. Typical Bushing CT Connection on a Single Transformer

3.2 Setting the Test Voltage

The ATRT offers two test voltages, 4 Vac and 40 Vac. The unit always defaults to 40 Vac at power-on. The 4 Vac test voltage can be used in situations where the 40 Vac excitation voltage may saturate the CT's. To set the test voltage:

a. Turn on the unit and start from the "START-UP" menu:

ATRT-01 S3 "START-UP" menu

ATRT-01B S3 "START-UP" menu

Press the **[2]** key (SETUP).

b. The following screen will be displayed:

1. RECORD ID 2. TEST VOLTAGE 3. PRINT RECORD 4. SAVE/RESTORE RECORD 5. SET TIME 6. SET LANGUAGE 7. SET 50/60 HZ

ATRT-01 S3

ATRT-01B S3

Press the [2] key (TEST VOLTAGE).

c. The following screen will be displayed:

Press the **[1]** key (4 VOLTS) to select 4 volts as the test voltage or press the **[2]** key (40 VOLTS) to select 40 volts as the test voltage.

d. The voltage will be set and the following confirmation message will be displayed:

Press any key to return to the "START-UP" menu.

3.3 Setting the Date and Time

To set the date and time:

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

1.	RECORD ID
2.	TEST VOLTAGE
3.	PRINT RECORD
4.	SAVE/RESTORE RECORD
5.	SET TIME
6.	SET LANGUAGE

Press the **[5]** key (SET TIME)

c. The following screen will be displayed:

Type in the date using the alpha-numeric keypad. The following screen will be displayed:

Enter the time using the alpha-numeric keypad. When the time has been entered, you will be immediately returned to the "START-UP" menu.

3.4 Setting the Interface Language

Follow the steps below to set the interface language (English, Spanish, or Turkish):

a. Start from the "START-UP" menu:

1. TEST	TRANSFORMER
2. SETU	P
3. CALC	ULATOR
TIME:	14:21:34
DATE:	05/24/11

Press the [2] key (SETUP).

b. The following screen will be displayed:

1.	RECORD ID	
2.	TEST VOLTAGE	
3.	PRINT RECORD	
4.	SAVE/RESTORE	RECORD
5.	SET TIME	
6.	SET LANGUAGE	

Press the [6] key (SET LANGUAGE).

c. The following screen will be displayed:

Select the preferred interface language by pressing the corresponding key on the keypad ([1], [2], or [3]). The interface language will be set and a confirmation screen will be displayed as shown below:

Press any key to return to the "START-UP" menu.

3.5 Setting the Frequency (ATRT-01B S3 Only)

Follow the steps below to set the preferred frequency (50 or 60 Hz):

a. Start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [7] key (SET 50/60 HZ).

c. The following screen will be displayed:

Select the preferred frequency by pressing the corresponding key on the keypad ([1] or [2]). The frequency will be set and a confirmation screen will be displayed as shown below:

Press any key to return to the "START-UP" menu.

3.6 Performing Tests

3.6.1. Entering Test Record Header Information

You can enter the test record header information before performing tests. The record header includes identifying information such as the company, station, circuit, manufacturer, etc. Once the header information has been set, it will apply to all subsequent test records. Follow the steps below to enter the test header information:

a. Start from the "START-UP" menu:

1.	TEST	TRANSFORMER	
2.	SETUP	>	
3. CALCULATOR			
ΤI	ME:	14:21:34	
DA	TE:	05/24/11	

Press the **[2]** key (*SETUP*).

b. The following screen will be displayed:

Press the [1] key (RECORD ID).

c. The following screen will be displayed:

Type the company name using the alpha-numeric keypad.

When pressing a key, the corresponding number on the key will be displayed first. Pressing the key again will display the first letter on the key. Pressing the key again will display the second letter on the key. For example, to type the letter "A", you must press the **[2]** key twice. To erase the character at the cursor position, press the **[CLEAR]** key. Press the **[Contrast** \land] key to move to the next character. Press the **[Contrast** \lor] key to move to the previous character. Press the **[ENTER]** key when you are done typing the company name.

d. The following screen will be displayed:

Type the station name using the alpha-numeric keypad and then press the **[ENTER]** key.

e. The following screen will be displayed:

CIRCOIII
-
↑⁄↓ TO POSITION
"ENTER" TO ACCEPT

Type the circuit information using the alpha-numeric keypad and then press the **[ENTER]** key.

f. The following screen will be displayed:

Type the manufacturer name using the alpha-numeric keypad and then press the **[ENTER]** key.

g. The following screen will be displayed:

Type the transformer's model information using the alpha-numeric keypad and then press the **[ENTER]** key.

h. The following screen will be displayed:

SERIAL NUMBER:	
-	
↑∕↓ TO POSITION	
"ENTER" TO ACCEPT	

Type the transformer's serial number using the alpha-numeric keypad and then press the **[ENTER]** key.

i. The following screen will be displayed:

KVA RATING:
-
↑/↓ TO POSITION
"ENTER" TO ACCEPT

Type the transformer's KVA rating using the alpha-numeric keypad and then press the **[ENTER]** key.

j. The following screen will be displayed:

Type the operator's name using the alpha-numeric keypad and then press the **[ENTER]** key. All header information will be saved, and you will be returned to the "START-UP" menu.

3.6.2. Testing a Single Phase Transformer

Follow the steps below to test a single phase transformer:

a. Start from the "START-UP" menu:

Press the [1] key (TEST TRANSFORMER).

b. The following screen will be displayed:

XFMR CONFIG:	
1. SINGLE PHAS	3E
2. DY	
3. YD	
4. DD	
5. YY	
6. NEXT PAGE	

Press the [1] key (SINGLE PHASE).

c. The following screen will be displayed:

Option 3 (*USE PREV DATA*) will be listed only if you had provided name plate voltages for a previous test.

NOTE

1. YES

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed:

Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown:

NAME PLATE VOLTAGE:	
н:х	
500 :	

Press the [ENTER] key. The following screen will be displayed:

```
NAME PLATE VOLTAGE:
H : X
500 : 0
```

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown:

NAME PLATE VOLTAGE:	
н:х	
500 : 10	

Press the [ENTER] key. Continue to step d.

2. NO

Press the **[2]** key (*NO*) if you do not want to enter the transformer name plate voltage. **Continue to step d**.

3. USE PREV DATA

Press the **[3]** key (*USE PREV DATA*) to use the name plate voltage values entered when performing the last test. **Continue to step d.**

d. The following screen will be displayed:

Press the **[START]** key to start the test.

e. The following screen will be displayed while the test is being performed:

The test results will be displayed on the LCD screen when testing has finished:

RAT:	+1.003
PHS:	0.02°
MA:	0.0
ERR:	0.05%

The percentage error (ERR) will be displayed only if name plate voltage values were entered.

NOTE

The polarity is displayed as either a plus sign (+) for "in-phase" or a minus sign (-) for "out-of-phase".

Press any key to continue.

f. The following screen will be displayed:

KEE	EP THIS	READING?
1.	YES	
2.	NO	

Press the **[1]** key (*YES*) to save the reading.

g. The following screen will be displayed:

Press any key to continue.

The above screen will be displayed if there is currently no data in the unit's memory buffer. If a test was previously performed or a test record was restored from Flash EEPROM or from a Flash drive, the following screen will be displayed instead:

PR	EVIOUS DATA IN BUF	
1. 2.	APPEND PREV. DATA CLEAR PREV. DATA	

Press the **[1]** key (*APPEND PREV. DATA*) to append the data in the unit's working memory to the current test results, or press the **[2]** key (*CLEAR PREV. DATA*) to clear any previous data from the unit's memory buffer and only save the current test results.

The following screen will then be displayed:

TEST	SAVED	

Press any key to continue.

h. The following screen will be displayed:

Press the [2] key (NO).

i. The following screen will be displayed:

Press the **[1]** key (*YES*) to save the test record to the unit's Flash EEPROM.

j. The test record will be saved and the following screen will be displayed:

The unit will automatically assign the record number and will not over-write existing test records.

Press any key to return to the "START-UP" menu.

3.6.3. Testing a Three Phase Transformer

Follow the steps below to test a three phase transformer:

a. Start from the "START-UP" menu:

1. TEST	TRANSFORMER			
2. SETU	P			
3. CALC	3. CALCULATOR			
IIME:	14:21:34			
DATE:	05/24/11			

Press the [1] key (TEST TRANSFORMER).

b. The following screen will be displayed:

XF	MR CONFIG:
1.	SINGLE PHASE
2.	DY
3.	YD
4.	DD
5.	YY
6.	NEXT PAGE

You can press the **[6]** key (*NEXT PAGE*) to view additional transformer types. The following screen will be displayed:

NOTE	XFMR CONFIG:
	1. DZ
	2. ZD
	3. YZ
	4. ZY
	5. TT
	6. PREVIOUS PAGE

Select a three-phase transformer test by pressing the corresponding key ([2] to [5]). For this example, press the [2] key (*Dy*) from the first page to select the Delta to Y phase transformer test.

c. The following screen will be displayed:

XØ	ACCESSIBLE?
1.	YES
2.	NO

Press the **[1]** key (*YES*) if X0 is accessible or the **[2]** key (*NO*) if it is not accessible.

d. The following screen will be displayed:

1.	DY1
2.	DY3
З.	DY5
4.	DY7
5.	DY9
6.	DY11

Select the transformer configuration by pressing the corresponding key ([1] to [6]). For this example, press the [1] key (*Dy1*).

e. The following screen will be displayed:

Option 3 (*USE PREV DATA*) will be listed only if you had provided name plate voltages for a previous test.

- NOTE
 - 1. YES

Press the **[1]** key (*YES*) if you would like to enter the transformer name plate voltage values. The following screen will be displayed:

```
NAME PLATE VOLTAGE:
H : X
Ø :
```

Type the H winding name plate voltage value using the numeric keypad. The screen will be updated as shown:

```
NAME PLATE VOLTAGE:
H : X
500 :
```

Press the [ENTER] key. The following screen will be displayed:

Type the X winding name plate voltage value using the numeric keypad. The screen will be updated as shown:

Press the [ENTER] key. Continue to step f.

2. NO

Press the **[2]** key (*NO*) if you do not want to enter the transformer name plate voltage. **Continue to step f.**

3. USE PREV DATA

Press the **[3]** key (*USE PREV DATA*) to use the name plate voltage values entered when performing the last test. **Continue to step f.**

f. The following screen will be displayed momentarily:

Then the following screen will be displayed showing the Phase A cable connections for the selected test (this will differ depending on the test selected):

	PHASE	A
CABLE		XEMR
X1,X2	TO	X1,X0
H1,H2	TO	H1,H3
"STARI	r" Whei	N READY

Make the cable connections per the instructions and then press the **[START]** key to run the Phase A test.

g. The following screen will be displayed while the test is being performed:

The Phase A test results will be displayed on the LCD screen when testing has finished:

RATIO)	MA	%DIFF
+15.003		001	0.02
"ENTER"	то	CONT	TINUE

Press the [ENTER] key to continue.

h. The following screen will be displayed showing the Phase B cable connections for the selected test:

	PHASE E	}
CABLE		XEMR
X1,X2	TO	X2,X0
H1,H2	TO	H2,H1
"START	" WHEN	READY

Make the cable connections per the instructions and then press the **[START]** key to run the Phase B test.

i. The following screen will be displayed while the test is being performed:

The Phase A and B test results will be displayed on the LCD screen when testing has finished:

RATIO	MA	%DIFF
+15.003 +15.015	001 001	0.02 0.10
"ENTER" TO) сомт	INUE

Line 1 of the results shows the Phase A test results, and line 2 shows the Phase B test results.

Press the [ENTER] key to continue.

j. The following screen will be displayed showing the Phase C cable connections for the selected test:

_	PHASE	С	
CABLE X1,X2 H1,H2	TO TO	XEMR X3,X0 H3,H2	
"STAR	T" WHE	N READY	

Make the cable connections per the instructions and then press the **[START]** key to run the Phase C test.

k. The following screen will be displayed while the test is being performed:

The Phase A, B, and C test results will be displayed on the LCD screen when testing has finished:
TEST RE	ESULTS:	
RATIO	MA %DIFF	-
A +15.003	001 0.02	2
B +15.015	001 0.10	
C +15.000	001 0.00	3
0.0° 0.0°	0.0°	
XFMR TYPE:	DYN1	

The phase angles for Phase A, B, and C are also displayed at the bottom of the test results from left to right, respectively. A phase angle of 0° or 360° indicates "in-phase" while a phase angle of 180° indicates "out-of-phase". Press any key to continue.

I. The following screen will be displayed:

KE	ΞP	THIS	READING?
1.	YE	S	
2.	NO)	

Press the **[1]** key (*YES*) to save the reading.

m. The following screen will be displayed:

Press any key to continue.

The above screen will be displayed if there is currently no data in the unit's memory buffer. If a test was previously performed or a test record was restored from Flash EEPROM or from a Flash drive, the following screen will be displayed instead:

NOTE

PREVIOUS DATA IN BUF 1. APPEND PREV. DATA 2. CLEAR PREV. DATA

Press the **[1]** key (*APPEND PREV. DATA*) to append the data in the unit's working memory to the current test results, or press the **[2]** key (*CLEAR PREV.*

DATA) to clear any previous data from the unit's memory buffer and only save the current test results.

The following screen will then be displayed:

Press any key to continue.

n. The following screen will be displayed:

RUł 1.	N ANOTHER TEST? YES
2.	NO
3.	REPEAT PREV. TEST

Press the [2] key (NO).

o. The following screen will be displayed:

SA'	Æ	THIS	RECORD?
1.	YE	S	
2.	NC)	

Press the [1] key (YES) to save the test record to the unit's Flash EEPROM.

p. The test record will be saved and the following screen will be displayed:

The unit will automatically assign the record number and will not over-write existing test records.

Press any key to return to the "START-UP" menu.

3.7 Working With Test Records

3.7.1. Viewing the Contents of the Working Memory

Whenever a test is performed or a test record is retrieved, the data is stored in the ATRT's working memory. You can view the test data using the steps below:

a. Start from the "START-UP" menu:

Press the **[2]** key (SETUP).

b. The following screen will be displayed:

Press the [3] key (PRINT RECORD).

c. The basic test record information will be displayed as shown:

SINGLE PHASE NUM TESTS: 1
05/26/11 15:33:58

Press the **[Contrast** \lor] key. The test record details will be displayed as shown below:

1 SINGL 40 VOLT	E PHASE 'S	
RATIO	MA	%DIFF
1.003	0002	0.3

Press the **[STOP]** key to return to the "START-UP" menu.

3.7.2. Saving Test Results to a Test Record

After performing a test, the user is presented the option to save the test results to the unit's Flash EEPROM or to a USB Flash Drive. If the test results are not saved immediately after performing a test, they will still remain in the working memory and can be saved later, as long as a new test has not been performed and the unit has not been turned off. Follow the steps below to save the test results from the working memory to a test record (the following procedure can also be used to re-save a restored test record to a new memory location or to a USB Flash Drive):

a. Perform a test or restore a test record to the working memory (see section 3.7.3 and 3.7.4), and then start from the "START-UP" menu:

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [4] key (SAVE/RESTORE RECORD)

c. The following screen will be displayed:

Option 5 (*COPY TO THUMB DRIVE*) will be listed only if a USB Flash drive is connected to the ATRT.

Press the [2] key (SAVE RECORD).

If a USB Flash drive is connected to the unit, continue to step d.

If a USB Flash drive is NOT connected to the unit, continue to step e.

d. The following screen will be displayed:

1. SAVE INTERNALLY

Press the **[1]** key (*SAVE INTERNALLY*) to save the test record to the unit's Flash EEPROM. **Continue to step e.**

2. SAVE TO THUMB DRIVE

Press the **[2]** key (*SAVE TO THUMB DRIVE*) to save the test record to the connected USB Flash drive. The following screen will be displayed:

Press any key to return to the "START-UP" menu.

e. The following screen will be displayed:

Press any key to return to the "START-UP" menu.

3.7.3. Restoring a Test Record From Flash EEPROM

Use the steps below to restore a test record from the ATRT's Flash EEPROM to the working memory:

a. Start from the "START-UP" menu:

TRANSFORMER
2
JLATOR
14:21:34
05/24/11

Press the **[2]** key (SETUP).

b. The following screen will be displayed:

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Option 5 (*COPY TO THUMB DRIVE*) will be listed only if a USB Flash drive is connected to the ATRT.

NOTE

Press the [1] key (RESTORE RECORD).

d. The following screen will be displayed:

Continue with the steps below.

1. ENTER RECORD NUMBER

Press the **[1]** key (*ENTER RECORD NUMBER*) if you know the record number that you would like to restore.

1.1. The following screen will be displayed:

Type the record number using the alpha-numeric keypad and then press the **[ENTER]** key.

1.2. The following screen will be displayed:

Press the [1] key (YES) to display the test record.

1.3. The basic information about the restored test record will be displayed as shown:

Press the **[Contrast** \lor] key. The test record details will be displayed as shown:

1 SINGL 40 VOLT	E PHASE 'S	
RATIO	MA	%DIFF
1.003	0002	0.3

Press the **[STOP]** key to return to the "START-UP" menu. The restored test record will remain loaded in the working memory.

2. SCROLL TO SELECT

Press the **[2]** key (*SCROLL TO SELECT*) to scroll through a directory of the stored test records.

2.1. The following screen will be displayed:

RECORDS DIRECTORY	
"UP" TO SCROLL FWD "DWN" TO SCROLL RVS	

Press the **[Contrast** \land] button or the **[Contrast** \lor] key to display the next or previous test record, respectively.

The basic test record information will be displayed as shown:

When you have located the test record that you would like to restored, press the **[ENTER]** key. Continue to step 1.2 on page 41.

3.7.4. Restoring a Test Record From a USB Flash Drive

Use the steps below to restore a test record from a USB Flash drive to the ATRT's working memory:

a. Make sure the USB Flash drive containing the test record(s) is inserted in the ATRT's USB Flash drive port ("USB MEM" port). Then start from the "START-UP" menu:

Press the **[2]** key (SETUP).

b. The following screen will be displayed:

Press the [4] key (SAVE/RESTORE RECORD)

c. The following screen will be displayed:

Press the **[1]** key (*RESTORE RECORD*).

d. The following screen will be displayed:

Press the [2] key (THUMB DRIVE).

e. The following screen will be displayed:

Type the record number that you would like to restore using the alpha-numeric keypad and then press the **[ENTER]** key.

f. The test record will be restored to the unit's working memory and the following screen will be displayed:

Press the [1] key (YES) to display the restored test record.

g. The basic information about the restored test record will be displayed as shown below:

Press the **[Contrast** \lor] key. The test record details will be displayed as shown below:

1 SINGL 40 VOLT	E PHASE S	
RATIO	MA	%DIFF
1.003	0002	0.3

Press the **[STOP]** key to return to the "START-UP" menu. The restored test record will remain loaded in the working memory.

3.7.5. Copying Test Records to a USB Flash Drive

Use the steps below to copy one or all test records from the unit's Flash EEPROM to a connected USB Flash drive:

a. Make sure a USB Flash drive is connected to the unit's "USB MEM" port, and then start from the "START-UP" menu:

Press the **[2]** key (SETUP).

b. The following screen will be displayed:

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Press the [5] key (COPY TO THUMB DRIVE).

d. The following screen will be displayed:

1. COPY SINGLE RECORD

Press the **[1]** key (*COPY SINGLE RECORD*) to copy a single test record from the ATRT's Flash EEPROM to the connected USB Flash drive. The following screen will be displayed:

Type the record number using the alpha-numeric keypad and then press the **[ENTER]** key. The test record will be copied to the USB Flash drive and the following screen will be displayed:

REC_000 SAVED	то
THUMB DRIVE	

Press any key to return to the "START-UP" menu.

2. COPY ALL RECORDS

Press the **[2]** key (*COPY ALL RECORDS*) to copy all test records from the ATRT's Flash EEPROM to the connected USB Flash drive. All test records will be copied from the unit to the connected USB Flash drive. The following screen will be displayed when the process is finished:

Press any key to return to the "START-UP" menu.

3.7.6. Viewing the Test Record Directory

Use the steps below to browse through a directory of the test records stored in the ATRT's Flash EEPROM memory:

a. Start from the "START-UP" menu:

1. TEST	TRANSFORMER
2. SETU	P
3. CALC	ULATOR
TIME:	14:21:34
DATE:	05/24/11

Press the **[2]** key (SETUP).

b. The following screen will be displayed:

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Option 5 (*COPY TO THUMB DRIVE*) is listed only if a USB Flash drive is connected to the unit.

NOTE

Press the **[3]** key (*RECORD DIRECTORY*).

d. The following screen will be displayed:

Press the **[Contrast** \land] or **[Contrast** \lor] key to scroll through the test record directory. The test record header will be displayed as shown:

You can continue to scroll through the record directory by pressing the **[Contrast** \land] and **[Contrast** \lor] keys. Press the **[STOP]** key to return to the "START-UP" menu.

3.7.7. Erasing Test Records from the Flash EEPROM

Follow the steps below to erase test records from the Flash EEPROM

a. Start from the "START-UP" menu:

1. TEST	TRANSFORMER
2. SETU	P
3. CALC	ULATOR
TIME:	14:21:34
DATE:	05/24/11

Press the [2] key (SETUP).

b. The following screen will be displayed:

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Press the [4] key (ERASE RECORD).

d. The following screen will be displayed:

If you have a USB Flash drive inserted in the ATRT's "USB MEM" port, the following screen will be displayed instead of the above screen:

NOTE

1.ERASE	INTERN	IAL F	REC	
2.ERASE	THUMB	DRV	REC	
Press the [1]	key (ER	ASE II	NTERNA	- L REC).

The following screen will be displayed:

Continue with the steps below.

1. ERASE SINGLE REC.

Press the [1] key (ERASE SINGLE REC.) to erase a single test record from the unit's internal Flash EEPROM. The following screen will be displayed:

1. ENTER RECORD NUMBER

Press the [1] key (ENTER RECORD NUMBER) if you know the record number that you would like to erase. The following screen will be displayed:

You can cancel the process and return to the "START-UP" menu by pressing the **[STOP]** key.

Type the record number that you would like to erase using the alpha-numeric keypad and then press the **[ENTER]** key. If you do not know the test record number, you can first view the test record directory using the instructions in section 3.7.6.

The following screen will be displayed while the record is being erased:

The following screen will be displayed when the test record has been completely erased:

Press any key to continue. You will be returned to the beginning of step d.

2. SCROLL TO SELECT

Press the **[2]** key (*SCROLL TO SELECT*) to scroll through the test record directory and locate the test record that you would like to erase. The following screen will be displayed:

RECORDS DIRECTORY
"UP" TO SCROLL FWD "DWN" TO SCROLL RVS

Press the **[Contrast** \land] or **[Contrast** \lor] key to scroll through the test record directory. The test record header will be displayed as shown:

SINGLE PHASE NUM TESTS: 1 05/27/11 15:25:57

You can continue to scroll through the record directory by pressing the **[Contrast** \land] and **[Contrast** \lor] keys. Once you have located the test record you would like to erase, press the **[ENTER]** key. The selected test record will be erased and the following screen will be displayed:

Press any key to continue. You will be returned to the beginning of step d.

2. ERASE ALL RECORDS

Press the **[2]** key (*ERASE ALL RECORDS*) to erase all the test records from the unit's internal Flash EEPROM. The following warning screen will be displayed:

You can press the **[STOP]** key to cancel the process and return to the "START-UP" menu.

Press the **[ENTER]** key to proceed with deleting all the test records from the unit's Flash EEPROM. The following screen will be displayed during the erasure process:

The following screen will be displayed when all test records have been completely erased:

Press any key to return to the "START-UP" menu.

3.7.8. Erasing Test Records from a USB Flash Drive

Follow the steps below to erase test records from a USB Flash drive:

a. Make sure a USB Flash drive is connected to the unit's "USB MEM" port, and then start from the "START-UP" menu:

1. TEST	TRANSFORMER
2. SETU	P
3. CALC	ULATOR
TIME:	14:21:34
DATE:	05/24/11

Press the **[2]** key (*SETUP*).

b. The following screen will be displayed:

Press the [4] key (SAVE/RESTORE RECORD).

c. The following screen will be displayed:

Press the [4] key (ERASE RECORD).

d. The following screen will be displayed:

Press the [2] key (ERASE THUMB DRV REC).

e. The following screen will be displayed:

1. ERASE SINGLE REC.

Press the **[1]** key (*ERASE SINGLE REC.*) to erase a single test record from the connected USB Flash drive. The following screen will be displayed:

ERASE	THUMB	DRIVE	
REC_			

Type the record number that you would like to erase using the alpha-numeric keypad and then press the **[ENTER]** key. The test record will be erased from the USB Flash drive and the following screen will be displayed:

THUMB DRIVE ERASED!	RE000

Press any key to continue. You will be returned to the beginning of step e. Press the **[STOP]** key to return to the "START-UP" menu.

2. ERASE ALL RECORDS

Press the **[2]** key (*ERASE ALL RECORDS*) to delete all test records from the connected USB Flash drive. The following warning screen will be displayed:

ERASE ALL THUMB DRIVE RECORDS! ARE YOU SURE? "ENTER" TO CONTINUE. Press the **[STOP]** key if you do not want to erase all the test records. You will be returned to the "START-UP" menu.

Press the **[ENTER]** key to proceed with deleting all the test records from the connected USB Flash drive. The following screen will be displayed when all the records have been erased:

Press any key to return to the "START-UP" menu.

3.8 Using the Turns Ratio Calculator

The ATRT-01 and ATRT-01B S2 feature a turns ratio calculator that can be used to calculate the turns ratio for various transformer types. The user only needs to provide the H and X name plate voltage values and the unit will calculate the turns ratio. Follow the steps below to use the turns ratio calculator.

a. Start from the "START-UP" menu:

1. TEST 2. SETU	TRANSFORMER	
3. CALC	ULATOR	
TIME: DATE:	14:21:34 05/24/11	

Press the **[3]** key (CALCULATOR).

b. The following screen will be displayed:

XFMR CONFIG: 1. SINGLE PHASE	
2. DY	
3. YD	
4. DD	
5. YY	
6. NEXT PAGE	

Select the transformer configuration by pressing the corresponding key on the keypad. You can press the **[6]** key (*NEXT PAGE*) to view additional transformer configuration types. For this example, press the **[3]** key (*Yd*) to select the Y-dT transformer type.

The following steps will differ for other transformer configuration types.

NOTE

c. The following screen will be displayed:

1. YES

Press the [1] key (YES) if H0 is accessible. The following screen will be displayed:

1.	YND1
2.	YND3
3.	YND5
4.	YND7
5.	YND9
6.	YND11

Select the transformer configuration by pressing the corresponding key. **Continue to step d.**

2. NO

Press the **[2]** key (*NO*) if H0 is not accessible. The following screen will be displayed:

1.	YD1		
2.	YD3		
3.	YD5		
4.	YD7		
5.	YD9		
6.	YD11		

Select the transformer configuration by pressing the corresponding key. **Continue to step d.**

d. The following screen will be displayed

Type the H name plate voltage value using the keypad. The screen will be updated:

```
NAME PLATE VOLTAGE:
H : X
1,734 :
```

Press the **[ENTER]** key. The following screen will be displayed:

```
NAME PLATE VOLTAGE:
H : X
1,734 : 0
```

Type the X name plate voltage using the keypad. The screen will be updated:

```
NAME PLATE VOLTAGE:
H : X
1,734 : 100
```

Press the **[ENTER]** key. The ratio will be calculated and displayed at the bottom of the screen:

```
NAME PLATE VOLTAGE:
H : X
1,734 : 100
RATIO = 15.017
```

Press any key to return to the "START-UP" menu.

APPENDIX A – TRANSFORMER VECTOR GROUP CODES

Utility power transformers manufactured in accordance with IEC specifications have a Rating Plate attached in a visible location. This plate contains a list of the transformer's configuration and operating specifications. One such rating is the winding configuration and phasedisplacement code. This code follows a convention that comprises letter and number sets that denote three-phase winding configurations (i.e., Wye, delta, or zig-zag). Letter symbols for the different windings are noted in descending order of their rated voltages. That is, symbols denoting higher voltage ratings will be in upper-case letters and symbols denoting lower or intermediate voltage ratings will be in lower-case letters. If the neutral point of either a wye or zig-zag winding is brought out, the indication will be an N (high voltage) or n (lower voltage). The end numeral is a 300 multiplier that indicates phase lag between windings.

Accordingly, the following standard practice applies:

Wye (or star) = Y (high voltage) or y (low voltage)

Delta = D (high voltage) or d (low voltage)

```
Zig-zag = Z (high voltage) or z (low voltage)
```

For example, **Dyn11** decodes as follows:

D indicates that the high-voltage windings are connected in a Delta configuration

(Since delta windings do not have a neutral point, the N never appears after a D).

y indicates that the lower voltage winding is in a wye (or star) configuration.

n indicates that the lower voltage windings have the neutral point brought out.

11 indicates a phase-displacement lag of 330 degrees between the Wye and the Delta winding.

APPENDIX B – Common ANSI Transformer Descriptions

	TRANSF CONFIGL	ORMER JRATION		WINDING				
STD TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	TURNS RATIO	VECTOR GROUP	NOTES
1	н ₁ 0Он ₂	x ₁ 00x ₂	1 Ø	H ₁ – H ₂	x ₁ -x ₂	V _H V _x	1ph0	SNG – PHS
	H2 Q	b / ^x 2	А	H ₁ -H ₃	x ₁ -x ₀	V., V.		
2	B/C	$x_1 O = c x_0$	В	H ₂ -H ₁	x ₂ -x ₀	V _x	Dyn1	d t – Y
	H ₁ O A DH ₃	٥ _{×3}	С	H ₃ – H ₂	x ₃ -x ₀			
	H ₂ Q	a X ₂	A	H ₁ -H ₀	x ₁ -x ₂	V		
3		X1 (p	В	H ₂ -H ₀	x ₂ -x ₃	$\frac{V_{\rm H}}{V_{\rm x},V_3}$	YNd1	y – d t
	H ₁ CO _{H3}	د <i>مح</i> ×ع	С	H ₃ – H ₀	x ₃ -x ₁			
	H ₂ O	×2 0	А	H ₁ -H ₃	x ₁ -x ₃			
4	BCC	b C	В	H ₂ -H ₁	x ₂ -x ₁	<u>V_H</u>	Dd0	dt-dt
	H ₁ H ₃ H ₃	$x_1 $	С	H ₃ -H ₂	x ₃ -x ₂	x		
	H ₂ O	×2 0	А	H ₁ -H ₀	x ₁ -x ₀	V		
5	B _{H0}		В	H ₂ -H ₀	x ₂ -x ₀	-V _x	YNyn0	у — у
	H ₁ CO _{H₃}		С	H ₃ -H ₀	x ₃ -x ₀	~		

VANGUARD.050207V1

	TRANSF CONFIGL	ORMER JRATION			WINDING	WINDING TESTED		WINDING TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES		
	Р ^Н 2	$x_3 $ x_1		А	H ₁ – H ₃	$x_{3} - x_{1}$					
1	в	c b		В	$H_2 - H_1$	$X_{1} - X_{2}$	V _H	Dd6			
	H ₁ $ -$	0 × ₂		С	H ₃ – H ₂	$x_2 - x_3$	X				
	H ₂ Q	×2 0		А	H ₁ – H ₃	$x_{1} - x_{3}$	M				
37	в	b		В	$H_2 - H_1$	$x_{2} - x_{1}$	<u></u> 	Dd0			
	H ₁ O A H ₃	X ₁ 0 a H ₃		С	H3 – H2	$x_{3} - x_{2}$	~				
	[⊥] T	$X_3 $		А	H ₁ – H ₂	$x_3 - x_2$	V				
38	C A	a		В	H ₂ – H ₃	$X_1 - X_3$	 	Dd2			
	H ₃ 0 В Н ₂	0 × ₂		С	H3 – H1	$X_2 - X_1$	~				
	H ₁ O	×3 0		А	H ₁ – H ₂	$X_3 - X_1$					
39	C A	c a		В	H ₂ – H ₃	X ₁ – X ₂		Dd4			
	н ₃ с В Н ²	$x_2 d b x_1$		С	$H_{3} - H_{1}$	$X_2 - X_3$	x				
	H ₁ O	×2 0		А	H ₁ – H ₂	$x_{2} - x_{3}$					
40	C A	c a		В	H ₂ – H ₃	x ₃ -x ₁	н	Dd8			
	H ₃ O _B OH ₂	$x_1 o x_3$		С	$H_{3} - H_{1}$	$x_1 - x_2$	x				
	H ₁ Q	$X_1 $		А	H ₁ – H ₂	$X_1 - X_3$					
41	C A	a		В	H ₂ – H ₃	$X_2 - X_1$		Dd10			
	H ₃ G _B H ₂	0 × ₃		С	H ₃ – H ₁	X3 - X2	x				
	H ¹ O	2 ^x 1		Α	H ₁ – H ₃	$X_{1} - X_{0}$					
42	AB	$x_3 $		В	H ₂ – H ₁	$x_2 - x_0$	$\frac{V_{H} \cdot V_{3}}{V_{Y}}$	Dyn1			
	H ₃ C H ₂	δ _{x2}		С	H3 – H2	$X_3 - X_0$					
	H ₂ O	_b ρ ^x 2	н ₃ -н ₂	А	H1-H3	$x_{1} - x_{3}$			NO		
2	в	x ₁ ο ^a η	^н 1- ^н 3	В	$H_2 - H_1$	x ₂ -x ₁	$\frac{V_{H} \cdot V_{3}}{V_{v}}$	Dy1	ACCESSIBLE NEUTRAL ON		
	H ₁ O A H ₃	čδ _{×3}	^Н 2 ^{-Н} 1	С	H3 – H2	x ₃ -x ₂	~		WYE WINDING		
	H ₂ Q	^X 1Q _c	H ₃ -H ₂	А	H ₁ – H ₃	$X_1 - X_2$			NO		
61	BC		н ₁ -н ₃	В	$H_2 - H_1$	$X_2 - X_3$	$\frac{V_{H} \cdot V_{3}}{V_{Y}}$	Dy3	ACCESSIBLE NEUTRAL ON		
	H ₁ H ₃ H ₃	x ₃ d	H ₂ -H ₁	С	$H_{3} - H_{2}$	$X_3 - X_1$	~		WYE WINDING		
	H ₂	^X 1Q _c		А	H ₁ – H ₃	$x_0 - x_2$					
62	в	$b \xrightarrow{a} 0 x_2$	—	В	$H_2 - H_1$	$x_0 - x_3$	$\frac{V_{H} \cdot V_{3}}{V_{x}}$	Dyn3			
	H ₁ H ₃	x ₃ d 0		С	H3 – H2	$x_0 - x_1$	•				

	TRANSFORMER CONFIGURATION				WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	_ه ک ^x 1		А	H ₁ – H ₃	$x_3-x_0\\$			
3	в С	$x_3 o a d x_0$		В	$H_2 - H_1$	$X_{1} - X_{0}$	$\frac{V_{H} \cdot V_{3}}{V}$	Dyn5	
	H ₁ O A H ₃	ͼϧϫ		С	H3 – H2	$X_2 - X_0$	۷X		
	^н 2 8	_ه ک ^۲	н ₃ -н ₂	А	H ₁ – H ₃	$X_3 - X_2$			NO
4	BC	x ₃ ο ^a οη	н ₁ -Н ₃	В	H ₂ – H ₁	X ₁ – X ₃	$\frac{V_{H} \cdot V_{3}}{V_{v}}$	Dy5	ACCESSIBLE NEUTRAL ON
	H ₁ O A H ₃	° bx2	^Н 2 ^{-Н} 1	С	H3 – H2	X ₂ – X ₁	- X		WYE WINDING
	^н 2 8	X ₃ Q _c		A	H ₁ – H ₃	$x_0 - x_1$	V V		
5	B C			В	H ₂ – H ₁	x ₀ - x ₂	$\frac{v_{H} \cdot v_{3}}{v_{x}}$	Dyn7	
	H ₁ O A DH ₃	x ₂ 0		С	H ₃ – H ₂	x ₀ -x ₃			
	н ₂ Я	×3 Q c	H ₃ -Н ₂	A	H ₁ – H ₃	x ₃ -x ₁	V., V.		NO
6	BC	$\eta - \sigma x_1$	^H 1 ^{-H} 3	В	H ₂ – H ₁	x ₁ - x ₂	$\frac{v_{\rm H} \bullet v_3}{v_{\rm X}}$	Dy7	ACCESSIBLE NEUTRAL ON
	H ₁ d A H ₃	x ₂ 0 °	^H 2 ^{-H} 1	С	H3 – H2	x ₂ -x ₃			WYE WINDING
	н ₂ Q		н ₃ -н ₂	A	H ₁ – H ₃	X ₂ -X ₁			NO
63	BCC	x ₂ o a x ₀	^H 1 ^{-H} 3	В	H ₂ – H ₁	$X_3 - X_2$	$\frac{V_{H} \cdot V_{3}}{V_{H}}$	Dy9	ACCESSIBLE NEUTRAL ON
	H ₁ O A H ₃	ͼϧϫ	^Н 2 ^{-Н} 1	С	H3 – H2	$X_1 - X_3$	۰x		WYE WINDING
	$\overset{H_2}{\otimes}$	ړ ک ^۲ 3		A	H ₁ – H ₃	X ₂ – X ₀			
64	BC	x ₂ o_a_o x ₀	—	В	H ₂ – H ₁	$X_3 - X_0$	$\frac{V_{H} \bullet V_{3}}{V_{Y}}$	Dyn9	
	H ₁ d AbH ₃	°Ъ×₁		С	H3 – H2	$X_1 - X_0$			
	н ₂ О	^X 2 Q c		А	H ₁ – H ₃	$X_0 - X_3$			
7	BCC	x_0 a x_3		В	H ₂ – H ₁	$x_0 - x_1$	$\frac{V_{H} \bullet V_{3}}{V_{Y}}$	Dyn11	
	H ₁ O A H ₃	x ₁ d ^b		С	$H_3 - H_2$	$X_0 - X_2$	• *		
	H ₂	^X 2 Q _c	н ₃ -н ₂	A	H ₁ – H ₃	$X_2 - X_3$			NO
8	BCC	$\eta = 0 x_3$	^н 1- ^н 3	В	$H_2 - H_1$	X ₃ – X ₁	$\frac{v_{H} \cdot v_{3}}{v_{x}}$	Dy11	ACCESSIBLE NEUTRAL ON
	H ₁ O A H ₃	x ₁ ď ^b	^Н 2 ^{-Н} 1	С	H3 – H2	X ₁ – X ₂			WYE WINDING
	H ₁ O	×q	н ₂ -н ₃	А	H ₁ – H ₂	$X_{1} - X_{0}$	N		
45	C/A		^н з- ^н 1	В	$H_2 - H_3$	$x_{2} - x_{0}$	$\frac{3}{2} \cdot \frac{^{\circ}H}{V}$	Dzn0	
	H ₃ O B H ₂	X ₃ b 0 ²	н ₁ -н ₂	С	$H_{3} - H_{1}$	x ₃ -x ₀	- x		
	н ₁ О	$x_{0} \xrightarrow{b} p^{1}$	H ₂ -H ₃	А	H ₁ -H ₂	$X_0 - X_2$	V		
46	C A		н ₃ -н ₁	В	H ₂ – H ₃	$x_0 - x_3$	$\frac{3}{2} \cdot \frac{H}{V_{u}}$	Dzn2	
	н ₃ фВ → Вн ₂	b _{x2}	H ₁ -H ₂	С	$H_{3} - H_{1}$	$X_0 - X_1$	x		

	TRANSFORMER CONFIGURATION				WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ¹ Q	$x_{0} \xrightarrow{b} \overset{X_{1}}{\rho}$		Α	H ₁ – H ₂	X3 - X2	V		NO
47	C A		—	В	H ₂ – H ₃	X ₁ – X ₃	$\frac{v_{\rm H}}{v_{\rm x}}$	Dz2	ACCESSIBLE
	н ₃ с В Н ²	bx2		С	H3 – H1	$X_2 - X_1$			NEUTHAL
	H ₁ O	ک [×] 3	H ₂ -H ₃	A	H ₁ -H ₂	$x_{3} - x_{0}$			
48	C A		^Н 3 ^{-Н} 1	В	H ₂ – H ₃	$x_{1} - x_{0}$	$\frac{3}{2} \cdot \frac{H}{V_x}$	Dzn4	
	н ₃ с н ₂	x_2^{O-c} x_1^{O}	^н 1- ^н 2	С	H3 – H1	$x_{2} - x_{0}$	~		
	H ₁ Q	۶ ^{×3}		A	H ₁ – H ₂	$X_3 - X_1$	V		NO
49	C A	a n b	—	В	H ₂ – H ₃	X ₁ – X ₂	$\frac{v_{\rm H}}{v_{\rm x}}$	Dz4	
	н ₃ фрн ₂	x_2^{O-2} x_1^{O}		С	H3 – H1	$X_2 - X_3$			NEOTIAL
	н ₂ Я	Q ^X ²		A	H ₁ – H ₃	X ₁ – X ₃	v		NO
9	в	a n b x	—	В	H ₂ – H ₁	X ₂ -X ₁	$\frac{V_{H}}{V_{x}}$	Dz0	ACCESSIBLE NEUTRAL
	H ₁ d A	X_1^{d} C_{c}^{d}		С	H3 – H2	$X_3 - X_2$			
	A ^H ²	x ₃ 0° × ¹		A	H ₁ – H ₃	x ₃ -x ₁	V		NO
10	B C	b ^η a		В	H ₂ -H ₁	x ₁ - x ₂	<u></u>	Dz6	ACCESSIBLE NEUTRAL
	H ₁ O A OH ₃	bx2		С	H ₃ – H ₂	x ₂ -x ₃	^		
	н ₁ Q	$x_2 $	н ₂ -н ₃	A	H ₁ – H ₂	$x_0 - x_1$, Vu		
50	C/A	$a \begin{pmatrix} X_0 \\ X_0 \end{pmatrix}^c$	^Н 3 ^{-Н} 1	В	H ₂ – H ₃	x ₀ - x ₂	$\frac{3}{2} \cdot \frac{H}{V_x}$	Dzn6	
	н ₃ с В Н ²	۶×1	^н 1 ^{-н} 2	С	H3 – H1	$x_0 - x_3$	~		
	н ₁ О	٩ ×2	${}^{\rm H}2^{-}{}^{\rm H}3$	А	H ₁ – H ₂	$X_2 - X_0$	V.		
51	C/A	°	^н з ^{-н} 1	В	H2 – H3	x ₃ - x ₀	$\frac{3}{2} \cdot \frac{H}{V_{y}}$	Dzn8	
	н ₃ фВ Н ₂	$X_1^{O} \xrightarrow{b} 0^{3}$	H ₁ -H ₂	С	H3 – H1	$X_1 - X_0$	X		
	н ₁ Я	٩ ^{×2}		A	H ₁ – H ₂	X ₂ – X ₃	V		NO
52	C/ A	°		В	H ₂ – H ₃	X ₃ – X ₁	<u></u>	Dz8	ACCESSIBLE NEUTRAL
	н ₃ фон ₂	$X_1^{d} \xrightarrow{b} 0^3$		С	H3 – H1	X ₁ – X ₂	^		
	н ₁ А	\mathbf{q}^{X_1} \mathbf{q}^{X_2}	н ₂ -н ₃	A	H ₁ – H ₂	$x_0 - x_3$	V		
53	C/A	b a a	^Н 3 ^{-Н} 1	В	$H_2 - H_3$	$x_0 - x_1$	$\frac{3}{2} \cdot \frac{V_{H}}{V_{u}}$	Dzn10	
	н ₃ с В Н ²	×3Q	H ₁ -H ₂	С	$H_{3} - H_{1}$	$x_0 - x_2$	x		
	н ₁ А	Q ¹ c ²		Α	H ₁ – H ₂	$x_1 - x_3$	V		NO
54	C/ A	b A a		В	$H_2 - H_3$	$X_2 - X_1$	<u>н</u>	Dz10	ACCESSIBLE
	н ₃ фрн ₂	x ₃ d		С	$H_3 - H_1$	$x_3 - x_2$			

	TRANSFORMER CONFIGURATION				WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	×36		А	H ₁ – H ₀	$X_2 - X_1$			
11	A B HO		—	В	$H_2 - H_0$	$X_3 - X_2$	$\frac{V_{H}}{V_{H}}$	YNd7	
	H10 C OH3	X ₂ a		С	$H_3 - H_0$	$X_1 - X_3$	•X ••3		
	^H 2	a X2		А	H ₁ – H ₀	$x_{1} - x_{2}$			
44		X ₁ C	—	В	$H_2 - H_0$	$x_2 - x_3$	$\frac{V_{H}}{V_{X} \cdot V_{3}}$	YNd1	
	H ₁ OCOH ₃	ٽ ک ه _{دي}		С	$H_3 - H_0$	$x_{3} - x_{1}$	X		
	н ₂ О	a X ₂	н ₃ -н ₂	А	H ₁ – H ₃	$X_{1} - X_{2}$			NO
12	ABN	X ₁ C	н ₁ -н ₃	В	$H_2 - H_1$	$X_2 - X_3$	$\frac{V_{H}}{V_{x}} \cdot \frac{V_{3}}{2}$	Yd1	ACCESSIBLE NEUTRAL ON
	H10 C OH3	د مح [×] ع	^H 2 ^{-H} 1	С	$H_3 - H_2$	$X_3 - X_1$	~		WYE WINDING
	н ₂	a X1		А	H ₁ -H ₀	$x_3 - x_2$			
13		X ₃ C	—	В	$H_2 - H_0$	$X_1 - X_2$	$\frac{V_{H}}{V_{X} \cdot V_{3}}$	YNd5	
	H ₁ O C OH ₃	° 💊 _{X2}		С	$H_3 - H_0$	$x_2 - x_3$			
	H ₂ B A	X ₃ x ₁ b	н ₃ -н ₂	Α	H ₁ – H ₃	$x_{3} - x_{1}$	$\frac{V_{\rm H}}{V_{\rm X}} \frac{V_{\rm B}}{2}$	Yd5	NO ACCESSIBLE NEUTRAL ON
14			H ₁ -H ₃	В	$H_2 - H_1$	$x_1 - x_2$			
	H10 C OH3	° → _{X2}	^Н 2 ^{-Н} 1	С	$H_{3} - H_{2}$	$x_2 - x_3$			WYE WINDING
	н ₂	× ₃ q o	н ₃ -н ₂	A	H ₁ – H ₃	$x_{2} - x_{1}$			NO
15	BN		^н 1- ^н 3	В	$H_2 - H_1$	$x_{3} - x_{2}$	$\frac{V_{\rm H}}{V_{\rm v}} \cdot \frac{V_{\rm \overline{3}}}{2}$	Yd7	ACCESSIBLE NEUTRAL ON
	H10 C OH3	X ₂ a	^Н 2 ^{-Н} 1	С	H3 – H2	x ₁ - x ₃	~		WYE WINDING
	H ₂	×20 c		Α	H ₁ -H ₀	$X_1 - X_3$			
16	^B H ₀	▶ × 3		В	H ₂ – H ₀	X ₂ – X ₁	$\frac{V_{H}}{V_{X} \cdot V_{3}}$	YNd11	
	H10 C OH3	X ₁ a		С	H ₃ – H ₀	X ₃ – X ₂	~ 0		
	H ₂	×2 ~ c	н ₃ -н ₂	A	H ₁ – H ₃	X ₁ – X ₃			NO
17	_ ^B N	b	^н 1- ^н 3	В	H ₂ – H ₁	$X_2 - X_1$	$\frac{V_{H}}{V_{v}} \cdot \frac{V_{\overline{3}}}{2}$	Yd11	ACCESSIBLE NEUTRAL ON
	H ₁ 0 [°] COH ₃	x ₁ a	^Н 2 ^{-Н} 1	С	H3 – H2	$X_3 - X_2$			WYE WINDING
	H ₂	X_3 a X_1		Α	H ₁ – H ₀	$X_0 - X_1$			
18	^B H ₀			В	$H_2 - H_0$	x ₀ -x ₂	$\frac{v_{H}}{v_{y}}$	YNyn6	
	H ₁ O C OH ₃	x ₂		С	$H_3 - H_0$	$x_0 - x_3$	x		
	H ₂	× ₂	H ₂ -H ₀	А	$H_1 - H_0$	X ₁ – X ₂			NO
19	^B L _{H0}	a ^b η	н ₃ -н ₀	В	$H_2 - H_0$	$x_2 - x_3$	<u></u>	YNy0	NEUTRAL ON
	H10 COH3	x ₁ 0 ⁻ c 0x ₃	H ₁ -H ₀	С	$H_{3} - H_{0}$	$X_3 - X_1$	X		WINDING

	TRANSF CONFIGL	ORMER JRATION			WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	× ₂	x ₃ -x ₀	А	H ₁ – H ₃	$X_1 - X_0$			NO
20	^B N	^b X ₀	x ₁ -x ₀	В	H ₂ – H ₁	$X_2 - X_0$	V _H	Yyn0	NEUTRAL ON
	H ₁ OCOH ₃	$x_1 \circ c \circ x_3$	x ₂ -x ₀	С	H3 – H2	$X_3 - X_0$	~		WINDING
	H ₂	× ₂		А	H ₁ – H ₀	$X_{1} - X_{0}$	v		
43		a \mathbf{A}_{0}	—	В	$H_2 - H_0$	$X_2 - X_0$	<u></u>	YNyn0	
	H ₁ O C OH ₃	$x_1 \circ \circ x_3$		С	H ₃ – H ₀	$x_{3} - x_{0}$			
	н ₂ О	×2 0		А	H ₁ – H ₃	$X_1 - X_3$	N		NO
21	B N	b a →		В	H ₂ – H ₁	$X_2 - X_1$	<u></u>	Yy0	ACCESSIBLE NEUTRAL
	H10 COH3	$x_1 \circ \circ x_3$		С	H3 – H2	X ₃ – X ₂			
	н ₂ О	$X_3 \circ a \circ X_1$	н ₂ -н ₀	А	H ₁ – H ₀	$X_2 - X_1$	V		NO ACCESSIBLE
22		υ β	н ₃ -н ₀	В	$H_2 - H_0$	X ₃ – X ₂	V _x	YNy6	NEUTRAL ON
	H10 COH3	×2	H ₁ -H ₀	С	H3 – H0	X ₁ – X ₃			WINDING
	н ₂ О	$X_3 \circ a \circ X_1$	x ₃ -x ₀	А	H ₁ – H ₃	$x_0 - x_1$	V		NO ACCESSIBLE
23	A	^b d ^x ⁰	x ₁ -x ₀	В	H ₂ – H ₁	x ₀ - x ₂	<u>V_H</u>	Yyn6	NEUTRAL ON HIGH VOLTAGE
	H10 C OH3	x2	x ₂ -x ₀	С	H ₃ – H ₂	$x_0 - x_3$	~		WINDING
	н ₂ О	$X_3 \circ a \circ X_1$		А	H ₁ – H ₃	x ₃ -x ₁	v		NO
24	A N	υ β	—	В	H ₂ – H ₁	X ₁ - X ₂	$\frac{v_{\rm H}}{v_{\rm x}}$	Yy6	ACCESSIBLE NEUTRAL
	H ₁ O C OH ₃	x2		С	H3 – H2	x ₂ -x ₃			
	н ₂ О	9 X ₂		А	H ₁ – H ₃	$x_{1} - x_{0}$			
65		X ⁰ X ₀		В	H ₂ – H ₁	$x_2 - x_0$	$\frac{v_{H} \cdot v_{3}}{v_{X}}$	YNzn1	
	H10 C OH3	د ∕ ×ع		С	H3 – H2	$x_{3} - x_{0}$			
	н ₂ О	$a \qquad \qquad$		А	H ₁ – H ₃	X ₁ – X ₀	Vu •V2		NO ACCESSIBLE
25	AN		—	В	$H_2 - H_1$	X ₂ – X ₀	$\frac{1100}{V_X}$	Yzn1	NEUTRAL ON WYE WINDING
	н ₁ о с он ₃	د مر _X 3		С	H3 – H2	X ₃ – X ₀			
	н ₂ О	$a \qquad \begin{pmatrix} X^2 \\ Q^2 \end{pmatrix}$	н ₃ -н ₂	A	H ₁ – H ₃	X ₁ – X ₂			NO
26	A	X ₁ b	^H 1 ^{-H} 3	В	$H_2 - H_1$	X ₂ – X ₃	$\frac{V_{\rm H}}{V_{\rm X}} \cdot \frac{V_{\rm S}}{2}$	Yz1	ACCESSIBLE NEUTRAL
	H ₁ COH ₃	° 20×3	^Н 2 ^{– Н} 1	С	H3 – H2	X ₃ – X ₁			
	н ₂ О			А	H ₁ – H ₃	$X_3 - X_0$	VII - Vo		NO ACCESSIBLE
27	AN	x ₃ x ₀ b	—	В	^H 2 ^{-H} 1	$x_1 - x_0$	$\frac{V_{\rm H} \cdot V_3}{V_{\rm X}}$	Yzn5	
	H ₁ C CH ₃	° ^ X ₂		С	H ₃ – H ₂	$x_{2} - x_{0}$			
	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
---------------------	---	--	--------------------------------	-------	---------------------------------	---------------------------------	---	-----------------	--------------------------
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	H ₂	ρ ^X 1	н ₃ -н ₂	A	H ₁ – H ₃	$X_3 - X_1$			NO
28	_ ^B _N	X20 a b	H ₁ -H ₃	В	H ₂ – H ₁	X ₁ – X ₂	$\frac{V_{H}}{V_{H}} \cdot \frac{V_{\overline{3}}}{2}$	Yz5	ACCESSIBLE
	H ₁ 0 ^C OH ₃	° ~ ×2	^н 2 ^{-н} 1	С	H3 – H2	$X_2 - X_3$			NEUTRAL
	н ₂ 0	X ₃ Q		A	H ₁ – H ₃	$X_0 - X_1$			
66		$\begin{bmatrix} x_0 \\ x_0 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_0 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_1 $	—	В	H ₂ – H ₁	$X_0 - X_2$	$\frac{V_{H}}{V_{H}} \cdot \frac{V_{\overline{3}}}{V_{\overline{3}}}$	YNzn7	
	H ₁ OCOH ₃	x ₂ 0		С	H3 – H2	X ₀ – X ₃	• *		
	н ₂ О	×30, °		A	H ₁ – H ₃	$X_0 - X_1$			NO
29	B N	$ \overset{b}{\longrightarrow} \overset{c}{\xrightarrow{X_0}} \overset{c}{$	—	В	H ₂ – H ₁	X ₀ – X ₂	$\frac{v_{H} \cdot v_{3}}{v_{x}}$	Yzn7	NEUTRAL ON
	H ₁ O C OH ₃	_{Х2} Ф		С	H3 – H2	$X_0 - X_3$			WYE WINDING
	н ₂ О	$x_3 \circ c$	H ₃ -Н ₂	A	H ₁ – H ₃	$x_2 - x_1$			NO
30	B N		H ₁ -H ₃	В	H ₂ – H ₁	x ₃ -x ₂	$\frac{V_{H}}{V_{X}} \frac{V_{3}}{2}$	Yz7	ACCESSIBLE NEUTRAL
	H ₁ O C OH ₃	x ₂ d	^Н 2 ^{-Н} 1	С	H3 – H2	x ₁ -x ₃			
	н ₂ О	$x_2 \alpha_{c}$		A	H ₁ – H ₃	$X_0 - X_3$	Vu Va		
67		$b \int_{a}^{b} \int_{a}^{b} \int_{a}^{a} \int_{a}^{a} \int_{a}^{b} \int_$		В	H ₂ – H ₁	$X_0 - X_1$	V _X	YNzn11	
	H10 C OH3	х ₁ о		С	H3 – H2	$X_0 - X_2$			
	н ₂ О	x ₂ o v		A	H ₁ – H ₃	$x_0 - x_3$			NO
31	A N	$b \bigwedge_{X_0}^{b} \bigwedge_{a}^{3}$	—	В	H ₂ – H ₁	$X_0 - X_1$	$\frac{V_{H} \bullet V_{\overline{3}}}{V_{H}}$	Yzn11	ACCESSIBLE NEUTRAL ON
	H ₁ O C OH ₃	х ₁ о		С	H3 – H2	$X_0 - X_2$	• *		WYE WINDING
	н ₂ О	x ₂ c x	н ₃ -н ₂	A	H ₁ – H ₃	X ₁ – X ₃			NO
32	A		H ₁ -H ₃	В	H ₂ – H ₁	X ₂ – X ₁	$\frac{V_{H}}{V_{X}} \cdot \frac{V_{S}}{2}$	Yz11	ACCESSIBLE NEUTRAL
	H10 C OH3	х ₁ о́	^H 2 ^{-H} 1	С	H3 – H2	X ₃ – X ₂			
		Å	x ₂ -x ₃	A	H ₁ – H ₀	$x_1 - x_2$	V		
55	ссн _о	c a	× ₃ -× ₁	В	H ₂ – H ₀	x ₂ -x ₃	$\frac{2}{3} \cdot \frac{1}{V_x}$	ZNd0	
	н ₃ в – он ₂	x ₃ d b bx ₂	x ₁ -x ₂	С	H ₃ – H ₀	x ₃ -x ₁			
		Å,		A	H ₁ – H ₂	$x_1 - x_2$	V.		NO
56	C_N	c a		В	H ₂ – H ₃	x ₂ -x ₃	V _x	Zd0	NEUTRAL ON
	H ₃ O B OH ₂	x ₃ d b bx ₂		С	H ₃ – H ₁	x ₃ -x ₁			HIGH VOLTAGE
	$\mathbf{Q}_{A}^{H_{1}}$	x ₂ x ₂ x ₃	x ₂ -x ₃	A	H ₁ – H ₀	$X_2 - X_1$. V		
57	с сн _о	a C	x ₃ -x ₁	В	H ₂ – H ₀	X ₃ – X ₂	$\frac{2}{3} \cdot \frac{H}{V_{\downarrow}}$	ZNd6	
	_{Н3} _В – о _{Н2}	×1	x ₁ -x ₂	С	$H_3 - H_0$	$X_1 - X_3$	×		

VANGUARD.050108V6

	TRANSF CONFIGI	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	Q ^H 2	a p ^x 1		A	H ₁ – H ₀	$x_3 - x_1$			NO
33		X ₃ 0 c n	—	В	H ₂ – H ₀	X ₁ – X ₂	$\frac{V_{H}}{V_{X} V_{3}}$	ZNy5	ACCESSIBLE NEUTRAL ON
		^b λ_{x_2}		С	H ₃ – H ₀	$X_2 - X_3$	Â. C		WYE WINDING
	q ^H 2	a p ^x 1	H ₃ -H ₂	Α	H ₁ – H ₃	$x_{3} - x_{1}$			NO
34	A B	X ₃ 0-0	H ₁ -H ₃	в	$H_2 - H_1$	$x_{1} - x_{2}$	$\frac{V_{\rm H}}{V_{\rm X}} \frac{V_{\rm 3}}{2}$	Zy5	ACCESSIBLE NEUTRAL
	H ₁ C OH ₃	^b λ^{X_2}	^H 2 ^{-H} 1	С	$H_3 - H_2$	$x_2 - x_3$			
	Q ^H 2	$x_2 q_n$		Α	H ₁ – H ₀	$X_1 - X_3$			NO
35			—	В	$H_2 - H_0$	X ₂ -X ₁	$\frac{V_{H}}{V_{X} \cdot V_{3}}$	ZNy11	ACCESSIBLE NEUTRAL ON
		x ₁ d		С	H3 – H0	$X_3 - X_2$			WYE WINDING
	q ^H 2	×2 9	H ₃ -H ₂	Α	H ₁ – H ₃	$X_1 - X_3$			NO
36	A B N	$a \xrightarrow{b} c \mathbf{o} x_3$	^н 1- ^н 3	в	H ₂ – H ₁	$X_2 - X_1$	$\frac{V_{\rm H}}{V_{\rm X}} \cdot \frac{V_{\rm 3}}{2}$	Zy11	ACCESSIBLE
	н <mark>о с</mark> -он _з	x1Q	^H 2 ^{-H} 1	С	H3 – H2	$X_3 - X_2$			NEOTIME
	P ^H ²	8 ^x 2		А	H ₁ – H ₂	$x_1 - x_2$	V		
58	A	a b	H ₁ -H ₀				$\frac{v_{H}}{v_{x}}$	T-T	
	HO OH3	x ^o ₁	$x_{1}^{2} - x_{2}^{2}$	В	H ₁ – H ₃	$x_{1} - x_{3}$		0	
	^H 2 Q	, ^{X2}	H ₂ -H ₃	Α	H ₁ – H ₃	$x_{1} - x_{2}$	$\frac{V_{H}}{V} \cdot \frac{V_{3}}{2}$	T-T	
59	A B	v o p						30	
	H თ ბ'3	^1	x ₁ -x ₂	В	H ₂ – H ₃	$x{1} - x_{3}$	$\overline{V_x} \cdot \overline{V_3}$	Lag	
	H ₂ Q	X ₂ Q _b	H ₂ -H ₃	A	H ₁ – H ₃	$x_{1} - x_{3}$	$\frac{V_{H}}{V_{H}}$ $\frac{V_{3}}{2}$	T-T	
60	ABH						V _X 2	. 30	
	HO 0''3	X ₁ 0 ^a	× ₁ -× ₃	В	H ₂ – H ₃	$x_{2} - x_{1}$	$\overline{V_{H}} \cdot \overline{V_{3}}$	Lead	

VANGUARD.050108V7

APPENDIX C – CEI/IEC 60076-1 Transformer Descriptions

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	2W Q a 2U		А	1U – 1W	2W – 2U			
1	в	c b		В	1V – 1U	2U – 2V	U1 U2	Dd6	
	1U 0 A 1W	0 2V		С	1W - 1V	2V – 2W			
	1V Q	2V Q		А	1U – 1W	2U – 2W			
37	в	b		В	1V – 1U	2V – 2U	U1 U2	Dd0	
	1U 0 A 1W	2U 6 2W		С	1W – 1V	2W – 2V			
	1U 8	2W Q b 2U		А	1U – 1V	2W – 2V			
38	C/ A	a C		В	1V – 1W	2U – 2W	U2	Dd2	
	1WOB01V	2V		С	1W – 1U	2V – 2U			
	1U Q	2W Q		А	1U – 1W	2W – 2U			
39	C/A	c/a		В	1V – 1U	2U – 2V	U1 U2	Dd4	
	1W 0 B 1V	2V 0 2U		С	1W – 1U	2V – 2W			
	1U Q	X2 Q		А	1U – 1V	2V – 2W			
40	C A	c		В	1V – 1W	2W – 2U	U1 U2	Dd8	
	1WOB 1V	2U 0 b 2W		С	1W – 1U	2U – 2V			
	1U Q	2U Q b 2V		А	1U – 1V	2U – 2W			
41	C/A	a		В	1V – 1W	2V – 2U	U1 U2	Dd10	
	1W 0 B 1V	0 2W		С	1W – 1U	2W - 2V			
	1U Q	م ²⁰		А	1U – 1W	2U – 2N			
42	AB	2WO-c-		В	1V – 1U	2V – 2N	$\frac{U1 \bullet V_3}{U2}$	Dyn1	
		$\delta_{_{2V}}$		С	1W – 1V	2W – 2N			
	1V 0	_b ,2 ^{2∨}	1W – 1V	А	1U – 1W	2U – 2V			NO
2	в	2U Ο ^a η	1U – 1W	В	1V – 1U	2V – 2W	$\frac{U1 \bullet V_3}{U2}$	Dy1	ACCESSIBLE NEUTRAL ON
		čδ _{2W}	1V – 1U	С	1W – 1V	2W – 2U			WYE WINDING
	1V Q	2U Q c	1W – 1V	А	1U – 1W	2U – 2V			NO
61	ВСС	b a 0 2V	1U – 1W	В	1V – 1U	2V – 2W	$\frac{V_{U1} \bullet V_3}{U2}$	Dy3	ACCESSIBLE NEUTRAL ON
		2W d	1V – 1U	С	1W – 1V	2W – 2U			WYE WINDING
	1V 0	2U Q c		А	1U – 1W	2N – 2V			
62	в		_	В	1V – 1U	2N – 2W	$\frac{U1 \bullet V_3}{U2}$	Dyn3	
		2W Q		С	1W – 1V	2N – 2U			

	TRANSF CONFIGI	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	_b 2∪		А	1U– 1W	2W – 2N			
3	BC	2W 0 a 0 2N		В	1V – 1U	2U – 2N	$\frac{U1 \bullet V_3}{U2}$	Dyn5	
	1U 0 A 1W	° b 2v		С	1W - 1V	2V – 2N	02		
	1V Q	ک 20	1W – 1V	А	1U– 1W	2W – 2V			NO
4	BCC	2W O	1U-1W	В	1V – 1U	2U – 2W	$\frac{U1 \bullet V_3}{U2}$	Dy5	ACCESSIBLE NEUTRAL ON
	1U 0A 1W	° 6 2V	1V _ 1U	С	1W – 1V	2V – 2U	02		WYE WINDING
	1V 8	^{2W} Q _C		A	1U – 1W	2N – 2U			
5	в			В	1V – 1U	2N –2V	$\frac{U1 \bullet V_3}{U2}$	Dyn7	
		_{2V} 0 °		С	1W – 1V	2N– 2W			
	1V Q	2W Q c	1W-1V	А	1U – 1W	2W – 2U			NO
6	в		1U-1W	В	1V – 1U	2U – 2V	$\frac{U1 \bullet V_3}{U2}$	Dy7	ACCESSIBLE NEUTRAL ON
		2V O	1V–1U	С	1W – 1V	2V – 2W			WYE WINDING
	1V Q	p 2W	1W-1V	A	1U– 1W	2V – 2U			NO
63	в	2V 0 a 2N	1U–1W	В	1V – 1U	2W – 2V	$\frac{U1 \bullet V_3}{U2}$	Dy9	ACCESSIBLE NEUTRAL ON
	1U 0 1W	ິ 🁌 2U	1V-1U	С	1W – 1V	2U – 2W	02		WYE WINDING
	1V Q	ب 2W		A	1U– 1W	2V – 2N			
64	в	2V 0 a 2N	—	В	1V – 1U	2W – 2N	$\frac{U1 \bullet V_3}{U2}$	Dyn9	
		° 6 2U		С	1W – 1V	2U – 2N	02		
	1V O	2V Q c		A	1U – 1W	2N – 2W			
7	в	2N a 0 2W		В	1V – 1U	2N– 2U	$\frac{U1 \bullet V_3}{U2}$	Dyn11	
		2U O ¹		С	1W – 1V	2N – 2V			
	1V Q	2V Q c	1W–1V	A	1U – 1W	2V – 2W	15		NO
8	ВСС		1U–1W	В	1V – 1U	2W – 2U	$\frac{U1 \bullet ^{V3}}{U2}$	Dy11	ACCESSIBLE NEUTRAL ON
	1U 0 01W	2U O	1V-1U	С	1W – 1V	2U – 2V			WYE WINDING
	1U Q	2U Q	1V–1W	А	1U – 1V	2U – 2N			
45	C/A		1W-1U	В	1V – 1W	2V – 2N	$\frac{3}{2} \cdot \frac{01}{02}$	Dzn0	
	1W 0 B 1V	0 2W b 2V	1U-1V	С	1W – 1U	2W – 2N			
	1U A		1V-1W	Α	1U– 1V	2N – 2V	a 111		
46	C/ A	a^{2W} a^{2N} c	1W–1U	В	1V – 1W	2N – 2W	2 U2	Dzn2	
	1W d B 1V	b 2V	1U–1V	С	1W – 1U	2N – 2U			

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1U Q			A	1U – 1V	2W – 2V			NO
47	C A	^{2W} a C	—	В	1V – 1W	2U – 2W	U2	Dz2	ACCESSIBLE
	1W 0 B 1V	6 _{2V}		С	1W – 1U	2V – 2U			NEOTINE
	1U Q	2W	1V_1W	A	1U – 1V	2W – 2N	2 11		
48	C/A		1W-1U	В	1V – 1W	2U – 2N	2 U2	Dzn4	
	1WO B 1V	O2U	1U–1V	С	1W – 1U	2V – 2N			
	1U O	2 ∞		A	1U – 1V	2W – 2U			NO
49	C A		—	в	1V – 1W	2U – 2V	U1 U2	Dz4	ACCESSIBLE
	1W 0 B 1V	ο_ _{2U}		С	1W – 1U	2V – 2W			NEUTHAL
	1V Q	2V Q		A	1U – 1W	2U – 2W			NO
9	в	a η b 2W	—	В	1V – 1U	2V – 2U	U2	Dz0	ACCESSIBLE NEUTRAL
	1U 0 1W			С	1W – 1V	2W – 2V			
	1V Q	° 2∪ 2∪		А	1U – 1W	2W – 2U			NO
10	BC	^{2w} _b η ^a		В	1V – 1U	2U – 2V	U1 U2	Dz6	ACCESSIBLE
	1U 0 A 1W	δ₂v		С	1W – 1V	2V – 2W			
	1U Q		1V-1W	А	1U – 1V	2N – 2U	- 114		
50	C/A	a^{2V} a^{2N} c^{2N}	1W –1 U	В	1V - 1W	2N - 2V	2 U2	Dzn6	
	1W 0 B 1V	b 2U	1U-1V	С	1W – 1U	2N – 2W			
	1U Q	2V Q	1V-1W	А	1U – 1V	2V – 2N			
51	C/A	°2N	1W-1U	В	1V – 1W	2W – 2N	3 U1 2 U2	Dzn8	
	1WO B 1V	0 ↓ 2U b	1U-1V	С	1W – 1U	2U – 2N			
	1U Q	2V Q a		А	1U– 1V	2V - 2W			NO
52	C/A	°		В	1V – 1W	2W – 2U	U1 U2	Dz8	ACCESSIBLE
	1W 0 B 1V	0 U b 2W		С	1W – 1U	2U – 2V			
	1U 8	^{2U} c 2V	1V–1W	А	1U – 1V	2N – 2W			
53	C/ A		1W-1U	В	1V – 1W	2N – 2U	$\frac{3}{2} \cdot \frac{U1}{U2}$	Dzn10	
	1WO B 1V	2W 0	1U-1V	С	1W – 1U	2N – 2V			
	1U Q	2U Q ^c ,O 2V		Α	1U – 1V	2U – 2W			NO
54	C/ A	b a		В	1V - 1W	2V– 2U	U1 U2	Dz10	ACCESSIBLE
	1W 0 B 1V	2W 0		С	1W –1U	2W – 2V			

	TRANSF CONFIGI	ORMER JRATION			WINDING	G TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V	2W 🔨 c		А	1U – 1N	2V – 2U			
11	^B _A _{1N}	b 2U	—	в	1V – 1N	2W – 2V		YNd7	
	1U O C O1W	2V a		С	1W – 1N	2U – 2W	02 - 0		
	1V 0	a 2U		А	1U – 1N	2U – 2V			
44		2W C	—	в	1V – 1N	2V – 2W	$\frac{U1}{U2 \bullet V_3}$	YNd1	
	1U O C O 1W	° 🖌 2V		С	1W – 1N	2W – 2U			
	1V 0	a 2V	1W-1V	А	1U – 1W	2U – 2V			NO
12		2U 🔨 🛛 b	1U–1W	в	1V – 1U	2V – 2W	$U_1 V_3$ $U_2 2$	Yd1	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	° 🖌 2W	1V-1U	С	1W - 1V	2W – 2U			WYE WINDING
	1V 0	a 2U		А	1U– 1N	2W – 2U			
13		2W C b	—	в	1V – 1N	2U – 2V	$\frac{U1}{U2 \bullet V_3}$	YNd5	
	1UO C 01W	° 🖌 2V		С	1W – 1N	2V - 2W			
	1V	a 20	1W-1V	Α	1U – 1W	2W – 2U			NO
14	в	2WC b	1U–1W	В	1V – 1U	2U – 2V	$\frac{U1}{U2} \cdot \frac{\overline{V_3}}{2}$	Yd5	ACCESSIBLE NEUTRAL ON
	1U 0 C 01W	° 🔶 2V	1V–1U	С	1W – 1V	2V – 2W			WYE WINDING
	1V	2W 0 c	1W-1V	Α	1U – 1W	2V – 2U			NO
15	в	b 2U	1U–1W	В	1V – 1U	2W – 2V	$\frac{U1}{U2} \cdot \frac{V_3}{2}$	Yd7	ACCESSIBLE NEUTRAL ON
	1U 0 C 01W	2V a	1V–1U	С	1W – 1V	2U – 2W			WYE WINDING
	1V 0	2V Q c		Α	1U– 1N	2U – 2W			
16		b 2W		В	1V – 1N	2V– 2U	$\frac{U1}{U2 \bullet \sqrt{3}}$	YNd11	
	1U O C O1W	2U a		С	1W – 1N	2W – 2V			
	1V 0	2V C	1W–1V	А	1U– 1W	2U – 2W			NO
17	B A	b 2W	1U–1W	В	1V – 1U	2V – 2U	$\frac{U1}{U2} \cdot \frac{V_3}{2}$	Yd11	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	2U a	1V–1U	С	1W – 1V	2W – 2V			WYE WINDING
	1V	2WO a O 2U		А	1U – 1N	2N – 2U			
18		b 2N		В	1V – 1N	2N – 2V	U1 U2	YNyn6	
	1U O C O 1W	2V		С	1W – 1N	2N – 2W			
	1V Q	2V 0	1V–1N	Α	1U – 1N	2U – 2V			
19		b a	1W-1N	В	1V – 1N	2V – 2W	U1 U2	YNy0	NEUTRAL ON
	1U 0 C 01W	2U 0 C 2W	1U-1N	С	1W – 1N	2W – 2U			WINDING

	TRANSF CONFIGI	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V	2V	2W-2N	А	1U – 1W	2U – 2N			
20	B A	^b _{2N}	2U-2N	В	1V – 1U	2V– 2N	U1 U2	Yyn0	NEUTRAL ON
	1U O C O1W	2U 0 C 0 2W	2V-2N	С	1W – 1V	2W – 2N			WINDING
	1U O	2V O		А	1U – 1N	2U – 2W			
43		a o	—	В	1V – 1N	2V – 2N	U2	YNyn0	
	1WO C 01V	2U O C O 2W		С	1W – 1N	2W – 2N			
	1V O	2V 0		А	1U – 1W	2U – 2W			NO
21	в А	b a		В	1V – 1U	2V – 2U	U1 U2	Yy0	ACCESSIBLE
	1U O C O 1W	2U O C O 2W		С	1W – 1V	2W – 2V			
	1V O	2WO a O 2U	1V-1N	А	1U – 1N	2V – 2U			
22	^B A O ^{1N}	b	1W-1N	В	1V – 1N	2W – 2V	U1 U2	YNy6	NEUTRAL ON
	1U O C O 1W	2V	1U-1N	С	1W – 1N	2U – 2W			WINDING
	1V O	2W 0 a 0 2U	2W-2N	А	1U – 1W	2N – 2U			
23	A N		2U-2N	В	1V – 1U	2N – 2V	U1 U2	Yyn6	NEUTRAL ON
	1U O C O 1W	0 2V	2V-2N	С	1W – 1V	2N – 2W			WINDING
	1V	2W a 2U		А	1U – 1W	2W – 2U			NO
24	в	c b	—	В	1V – 1U	2U – 2V	U1 U2	Yy6	ACCESSIBLE NEUTRAL
	1UO C 01W	0 2V		С	1W – 1V	2V – 2W			
	1V O	Q 2V		А	1U – 1W	2U – 2N			
65				В	1V – 1U	2V – 2N	$\frac{V_{H} \cdot V_{3}}{V_{x}}$	YNzn1	
	1U O C O 1W	c ∕∕o ₂₩		С	1W – 1V	2W – 2N			
	1V O	a O ^{2V}		А	1U – 1W	2U – 2N			NO ACCESSIBLE
25	B A	2U 2N	—	В	1V – 1U	2V – 2N	$\frac{U1 \bullet ^{\vee}3}{U2}$	Yzn1	NEUTRAL ON
	1UO CO1W	° > 2W		С	1W – 1V	2W – 2N			
	1V O	a C2V	1W–1V	А	1U – 1W	2U – 2V			NO
26	B A	2U	1U–1W	В	1V– 1U	2V – 2W	$\frac{U1}{U2} \cdot \frac{V3}{2}$	Yz1	ACCESSIBLE NEUTRAL
	1U O C O 1W	° > 2W	1V–1U	С	1W – 1V	2W – 2U			
	1V Q	a L		А	1U – 1W	2W – 2N			
27	B A	2W 2N D		В	1V – 1U	2U – 2N	$\frac{U1 \bullet V_3}{U2}$	Yzn5	
	1U O C O 1W	° 2V 2V		С	1W – 1V	2V – 2N			WYE WINDING

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V 0	a Q 2U	1W-1V	A	1U – 1W	2W – 2U			NO
28	B A	2W 0 b	1U–1W	В	1V – 1U	2U – 2V	$\frac{U1}{U2} \cdot \frac{V_3}{2}$	Yz5	ACCESSIBLE
	1U O C O1W	° 2V	1V–1U	С	1W – 1V	2V – 2W			NEUTRAL
	1V O	2W 0 0		А	1U – 1W	2N – 2U			
66		$b \xrightarrow{X_0} x_0^{2N} x_0^{2U}$	—	В	1V – 1U	2N – 2V	$\frac{V_{H}}{V_{H}} \cdot \frac{V_{3}}{V_{3}}$	YNzn7	
	1U O C O 1W	2V O		С	1W – 1V	2N – 2W	·x		
	1V 0	2W 0 C		A	1U – 1W	2N – 2U			NO
29	A N		—	В	1V – 1U	2N – 2V	$\frac{U1 \bullet V3}{U2}$	Yzn7	
	1U O C O1W	2V O		С	1W – 1V	2N – 2W			WYE WINDING
	1V O	2W 0 C	1W–1V	A	1U– 1W	2V – 2U	=		NO
30	B A		1U–1W	В	1V – 1U	2W – 2V	$U_1 V_3$ U2 2	Yz7	ACCESSIBLE NEUTRAL
	1UO C 01W	2V O	1V–1U	С	1W – 1V	2U – 2W			
	1V O	2V Q C		А	1U – 1W	2N – 2W	Vu Va		
67				В	1V – 1U	2N – 2U	V _X	YNzn11	
	1U O C O 1W	2U Ó		С	1W – 1V	2N – 2V			
	1V 0	2V 0 C		А	1U – 1W	2N – 2W			NO
31	B A		—	В	1V – 1U	2N – 2U	$\frac{U1 \cdot \sqrt{3}}{112}$	Yzn11	ACCESSIBLE NEUTRAL ON
	1U O C O 1W	2U O		С	1W – 1V	2N – 2V	02		WYE WINDING
	1V O	2V 0 C	1W-1V	A	1U – 1W	2U – 2W	U1 V5		NO
32	A	b a 2W	1U-1W	В	1V – 1U	2V – 2U	U2 2	Yz11	ACCESSIBLE NEUTRAL
	1UO C 01W	2U Ó	1V-1U	С	1W – 1V	2W – 2V			
		2U R	1V-1W	А	1U – 1N	2U– 2V	0 111		
55		c a	1W-1U	В	1V – 1N	2V – 2W	3 U2	ZNd0	
	б _в -о _т и	2W d b 2V	1U-1V	С	1W – 1N	2W – 2U			
		2U R		А	1U – 1V	2U – 2V	114		NO
56	ç_	c/a		В	1V – 1W	2V – 2W	U2	Zd0	NEUTRAL ON
	1W O B 0 1V	2W Ob 2V		С	1W – 1U	2W – 2U			HIGH VOLTAGE
	1U Q A	2VQ b 2W	1V-1W	А	1U – 1N	2V – 2U			
57		a C	1W-1U	В	1V – 1N	2W – 2V	$\frac{2}{3} \cdot \frac{01}{02}$	ZNd6	
	1W O B 1V	2U	1U-1V	С	1W – 1N	2U – 2W			

	TRANSF CONFIGI	ORMER JRATION			WINDING	G TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	1V Q	a p 2U		A	1U – 1N	2W – 2U			NO
33		2W 0-C	—	В	1V – 1N	2U – 2V	$\frac{U1}{U2 \bullet V_3}$	ZNy5	ACCESSIBLE NEUTRAL ON
	0 <u>C</u> 0 1W	^b b 2V		С	1W – 1N	2V – 2W			WYE WINDING
	1V Q B	a /2 2U	1W-1V	A	1U – 1W	2W – 2U			NO
34	A B	2W 0 C	1U-1W	В	1V – 1U	2U – 2V	$\frac{U1}{U2} \cdot \frac{V_3}{2}$	Zy5	ACCESSIBLE NEUTRAL
	o C O 1W	°∂2∨	1V–1U	С	1W – 1V	2V – 2W			
	11 9	2V Q		Α	1U – 1N	2U – 2W			NO
35		a c 0 2W	—	В	1V – 1N	2V – 2U	$\frac{U1}{U2 \bullet \sqrt{3}}$	ZNy11	ACCESSIBLE NEUTRAL ON
	0 C01₩	2U Ó		С	1W – 1N	2W – 2V			WYE WINDING
	1V Q	210	1W-1V	Α	1U – 1W	2U – 2W			NO
36	A B		1U–1W	в	1V – 1U	2V – 2U	U1 V3 U2 2	Zy11	ACCESSIBLE
	d 0₁₩ 1∪01₩	0 2U	1V-1U	С	1W – 1V	2W – 2V			NEOTINE
	₽ ^{1V}	9 2V		А	1U – 1V	2U – 2V		. . .	
58	Ав	a b					U1 U2	0	
	0 01W	0 2U 02W	1U-1V 2U-2V	В	1U – 1W	2U – 2W			
	14 9	a 0 2V	1V-1W	Α	1U – 1W	2U – 2V	$-\underbrace{U1}_{U2} \cdot \underbrace{V_3}_2$	T-T	
59	AB	o [™] \⊳						30	
	0 0 1U 1W	2U 2W	2U-2V	В	1V – 1W	2U – 2W	$\frac{U1}{U2}$ $\frac{2}{\sqrt{3}}$	Lag	
	14 9	Q 2V	1V-1W	А	1U – 1W	2U – 2W	$\begin{array}{c} U1 \\ U2 \\ \hline \\ U2 \\ \hline \\ \end{array}$	T-T	
60	AB							30	
	0 0 1U 1W	2U O a	2U-2W	В	1V – 1W	2V – 2U	$U_1 \cdot 2$ U2 $\sqrt{3}$	Lead	

APPENDIX D – Australian Std.2374 Transformer Descriptions

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	B	¢qpa		А	A – C	c-a			
1	BC	b c		В	B – A	a – b		Dd6	
	A C A C	đ		С	C – B	b-c			
	вО	ъ		Α	A – C	a – c	1.07		
37	B	b C		В	B – A	b-a		Dd0	
		a o c		С	С – В	c – b			
	▲ 0	c q_b p a		А	A – B	c-b	нν		
38	C A	a c	—	В	B-C	a-c		Dd2	
	с од В	b		С	C – A	b – a			
	Â	υQ		Α	A – B	c – a	1.87		
39	C/A	c/a	—	В	B – C	a – b		Dd4	
	с об в	b o a		С	C – A	b-c			
	A Q	рđ		Α	A – B	b-c	LIV		
40	C A	c/a		В	B – C	c-a		Dd8	
	с с	a o c		С	C – A	a – b			
	Â	a Q b b		Α	A – B	a – c	1.57		
41	C/A	a c	—	В	B – C	b – a		Dd10	
	с од В	0 c		С	C – A	c-b			
	٩Q	۶ª		Α	A – C	a – η			
42	AB	c <u>c</u>	—	В	B – A	b-η	$\frac{HV \bullet \sqrt{3}}{LV}$	Dyn1	
	с о в	ρ ^p		С	C – B	c-η			
	в Q	₅۶ ^ь	С – В	Α	A – C	a-c			NO
2	BC		A – C	В	B – A	b-a	$\frac{HV \bullet V_3}{LV}$	Dy1	ACCESSIBLE NEUTRAL ON
	A C A C	َى م	B – A	С	C – B	c-b			WYE WINDING
	B	^a مر	C – B	A	A – C	a – b	V V		NO
61	B	_b ^a o b	A – C	В	B – A	b-c	$\frac{v_{H} \cdot v_{3}}{v_{x}}$	Dy3	ACCESSIBLE NEUTRAL ON
		c ⁰	B – A	С	С – В	c – a			WYE WINDING
	BQ	^a م د		Α	A – C	$\eta-b$			
62	B C	$b n^{a} \circ b$	—	В	B – A	$\eta-\mathtt{c}$		Dyn3	
	A O A C	ູ້		С	C – B	η – a			

	TRANSF CONFIGI	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	в	" P °		А	A – C	$c-\eta$			
3	BC	°o <u>°</u> ďη	—	В	B – A	a-η	$\frac{HV \bullet \sqrt{3}}{LV}$	Dyn5	
		ίζρ		С	C – B	$b-\eta$	2.		
	вО	, O a	С – В	Α	A - C	c – b			NO
4	B	° • • •	A - C	В	B – A	a-c	$\frac{HV \bullet \sqrt{3}}{V}$	Dy5	ACCESSIBLE NEUTRAL ON
		٩٩	B-A	С	C – B	b–a			WYE WINDING
	BQ	• <i>م</i> ر		A	A – C	η – a			
5	B	$h^{\frac{a}{b}}$ $h^{\frac{a}{b}}$	—	В	B-A	η–b	$\frac{HV \cdot \sqrt{3}}{LV}$	Dyn7	
	A C	ьσ		С	С – В	η– c			
	в	د م ر	С – В	A	A – C	c – a			NO
6	BC	$\eta \rightarrow a \circ a$	A – C	в	B – A	a – b	$\frac{HV \bullet \sqrt{3}}{LV}$	Dy7	ACCESSIBLE NEUTRAL ON
	A O A C	₽Q _P	B – A	С	C – B	b-c			WYE WINDING
	в	، م	С – В	A	B – C	b – a			NO
63	B	ь о	A – C	В	B – A	c – b	$HV \bullet \sqrt{3}$	Dy9	ACCESSIBLE NEUTRAL ON
		်ဝဲ a	B – A	С	C – B	a – c			WYE WINDING
	В	٥°		A	A – C	b-η			
64	BC	٥ <u>٩</u> φη	—	В	B – A	c – η	$HV \bullet \sqrt{3}$	Dyn9	
	A O A C	° o a		С	С – В	a – η			
	в Q	۵ ۵ ر		A	A – C	η – c			
7	B C		—	В	B – A	η-a	$\frac{HV \cdot \sqrt{3}}{IV}$	Dyn11	
		a Ó ^D		С	C – B	η– b	2.		
	В	۵ م _د	С – В	A	A - C	b-c			NO
8	B	$\eta \rightarrow \circ \circ$	A – C	В	B – A	c – a		Dy11	ACCESSIBLE NEUTRAL ON
	A O A C	a Ó ⁰	B – A	С	С – В	a – b			WYE WINDING
	A Q	°	B-C	A	A – B	a – η			
45	C A	دq h	C – A	В	B – C	$b-\eta$	$\frac{3}{2} \cdot \frac{HV}{LV}$	Dzn0	
	сов	со <u></u> оь	A – B	С	C – A	c-ŋ			
	A	°o−_b pa	B-C	С	A - B	$\eta - b$			
46	C A	η	C – A	A	B-C	η-c	$\frac{3}{2} \cdot \frac{HV}{LV}$	Dzn2	
	с об в	6	A – B	В	C – A	η– a			

	TRANSF CONFIGL	ORMER JRATION			WINDING	TESTED			
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	Â	• ∽_ ٹ ۲ ۶ ª		A	A – B	c – b	нv		NO
47		a C		В	B – C	a – c	LV	Dz2	ACCESSIBLE NEUTRAL
	соов	٥. D b		С	C – A	b – a			
	Â	a C n	B-C	A	A – B	c-η	3 HV		
48			C – A	В	B – C	a – η	2 LV	Dzn4	
			A – B	С	C – A	b-η			
	Â	° م		A	A – B	c – a	ну		NO
49				В	B – C	a – b	LV		ACCESSIBLE NEUTRAL
				С	C – A	b – c			
	Å	^b Q _b		A	A – C	a-c	нv		
9	B C		—	B	B – A	b – a	LV		NEUTRAL
		۵ ۵ _د		C	С – В	с — b			
	Å	° OO a		A	A – C	c-a	HV		NO
10		b a a		B	B – A	a – b	LV	DZ6	NEUTRAL
		0.8		C	С – В	D — C			
	Â	ؠڡؠؖػ	B – C	A	A – B	η – a	3 HV		
50		a کې د	C – A	В	B-C	η – b	2 LV	Dzn6	
		O a	А-В	С	C – A	η – c			
	Â		B – C	A	A – B	b-η	3 HV	D 0	
51		ζ-qη	C – A	B	B-C	c – 1	2 LV	DZN8	
		a O b	A-B	C	C – A	a – η			
	Â			A	A – B	b – c	нv		NO
52				В	B-C	c – a	LV	Dz8	NEUTRAL
		40 _b		C	C – A	a – b			
	Â	°, °, – ° •	B – C	A	A – B	η – c 	3 HV		
53		$b \longrightarrow a$	C – A	B	B-C	11 – a	2 • LV	Dzn10	
		٥Ó	A – B	Ĺ	C – A	η–b			
	Â	a QO b		A	A – B	a – c	цу		NO
54		b a		В	B – C	b – a	LV	Dz10	ACCESSIBLE NEUTRAL
		٥O		С	C – A	c – b			

	TRANSFORMER CONFIGURATION				WINDING	G TESTED	TESTED		
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	° مر ز		Α	A - N	b – a			
11	$A \stackrel{B}{\frown} N$	b a	—	В	B – N	c – b	$\frac{HV}{V \cdot \sqrt{3}}$	YNd7	
	A O C O C	a o ^a		С	C – N	a – c			
	B B B N			Α	A - N	a – b			
44		a 🔨 🛛 b		В	B – N	b-c		YNd1	
	A O C O C	د کر ہ		С	C – N	c–a	20 - 0		
	в		С – В	Α	A – C	a – b		Yd1	NO
12	A	a 🖌 🛛 b	A – C	В	B – A	b – c	$\frac{HV}{IV} \cdot \frac{\sqrt{3}}{2}$		ACCESSIBLE NEUTRAL ON
	A O C O C	، کې	B-A	С	С – В	c – a			WYE WINDING
	в	c c b		Α	A - N	c – a		YNd5	
13	$A \stackrel{B}{\longrightarrow} N$			В	B – N	a – b			
	A O C O C	• م م		С	C – N	b – c	2000		
	B A A C C C C C	c o c o b	С – В	A	A – C	c – a	$\frac{HV}{LV} \frac{V_3}{2}$	Yd5	NO ACCESSIBLE NEUTRAL ON WYE WINDING
14			A – C	В	B – A	a – b			
			B – A	С	С – В	b – c			
	В	۰م _د	С – В	Α	A – C	b–a			NO
15		b Da	A – C	В	B – A	c – b	$\frac{HV}{V_3}$	Yd7	ACCESSIBLE NEUTRAL ON
	A O C O C	b O a	B – A	С	С – В	a – c			WYE WINDING
	в	[▶] Α		A	A– N	a – c			
16		b So c		В	B – N	b-a		YNd11	
	AO COC	a O a		С	C – N	c – b			
	В	bQ.	С – В	A	A – C	a – c			NO
17	, ^B ↓	b co	A – C	В	B – A	b – a	$\frac{HV}{V_3}$	Yd11	ACCESSIBLE NEUTRAL ON
	A O C O C	a O a	B – A	С	С – В	c – b			WYE WINDING
	В	د <i>م</i> ۹ <i>۰</i> ۹		A	A – N	η – a			
18		$\int_{b}^{c} \eta$	—	В	B – N	η-b	HV LV	YNyn6	
	AO COC	b		С	C – N	η – c			
	В	b	B – N	A	A – N	a – b			NO
19		^b	C – N	В	B – N	b-c		YNy0	NEUTRAL ON
-	A O C O C	a O C O C	A – N	С	C – N	c – a	1		LOW VOLTAGE WINDING

	TRANSF CONFIGI	ORMER JRATION			WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	Þ	c – h	A	A – C	a – η	HV		NO ACCESSIBLE
20	A		a-h	В	B-C	b-η	LV	Yyn0	NEUTRAL ON HIGH VOLTAGE
	AO COC	aU CUC	n – a	C	С-В	c – 1			WINDING
10		O bl		A		a-ŋ	HV	VNUDO	
43		n con		B		$b = \eta$	LV		
	x0 000			C					
		Ö		A	A-C	a-c	нv	Yv0	
21				B	B-A	b-a	LV	.,,,	NEUTRAL
						0-0 b-a			NO
	β						нv	YNv6	ACCESSIBLE
22		b O		Б		a_0	LV		LOW VOLTAGE
	B	5				n_a			NO
00	٥ ه ات		c-n	A	R-0	n_b	нν	Vyn6	
23		6 0	b-h	В	C = B	n_c	LV		
	B				A - C	c-a			Wildling
	ο B				B-A	a-b	HV	Yv6	NO ACCESSIBLE
24	A O C O C	ь в			С-В	b – c	LV		NEUTRAL
	В	OÞ		A	A – C	a_n			
65	B	a o o b		B	B – A	b-η	V _{H •} V ₃	YNzn1	
05	A O C O C			C	С – В	c – η	V _x		
	В	QÞ		A	A – C	a-η			NO
25	B		_	В	B – A	b-η	$\frac{V_{H} \bullet V_3}{V_1}$	Yzn1	ACCESSIBLE NEUTRAL ON
	A O C O C			с	C – B	c – η	2.		WYE WINDING
	В	в Ор	С-В	Α	A – C	a-b			NG
26	B	a O b	A – C	В	B – A	b-c	$\frac{HV}{V} \cdot \frac{V_3}{2}$	Yz1	ACCESSIBLE
	A O C O C	، مر ،	B – A	С	C – B	c – a	2, 2		NEUTHAL
	В	Q a		Α	A – C	c-η			NO
27		°°°°n ^b	—	В	B – A	a-ŋ	$\frac{HV \bullet V_3}{IV}$	Yzn5	ACCESSIBLE NEUTRAL ON
	A O C O C			С	С – В	b-η	LV		WYE WINDING

	TRANSFORMER CONFIGURATION				WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	a Qa	С – В	A	A – C	c – a			NO
28	AB	c o	A – C	В	B-A	a – b	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yz5	ACCESSIBLE
	A O C O C	٩٩٢	B – A	С	С – В	b-c			NEUTRAL
	В	ہ مر ر		A	A – C	η – a			
66	A^{B}	b on a	—	В	B – A	$\eta - b$	$\frac{V_{H}}{V_{H}} \cdot \frac{V_{3}}{V_{3}}$	YNzn7	
	AO COC	bO <i>a</i>		С	С – В	$\eta-\mathtt{c}$	*x		
	в	ہ مر ہ		A	A – C	η – a			NO
29	AB		—	В	B – A	η–b	$\frac{HV \bullet \sqrt{3}}{LV}$	Yzn7	ACCESSIBLE NEUTRAL ON
	A O C O C	٥Ö		С	С – В	η– c			WYE WINDING
	В	ہ مے ر	С – В	Α	A– C	b – a			NO
30	B	b a a	A – C	В	B – A	c – b	$\frac{HV}{LV} \cdot \frac{\sqrt{3}}{2}$	Yz7	ACCESSIBLE
	A O C O C	٥Ö	B – A	С	C – B	a – c			NEOTRAL
	В	• مر _د		Α	A – C	η – c	V V5		
67	$A^{B} \prod_{N} N$	b on a	—	В	B – A	η-a	$\frac{v_{H} \cdot v_{3}}{v_{x}}$	Yzn11	
	A O C O C	٥o		С	С – В	η– b			
	В	۵ مر		A	A – C	η – c			NO
31	B	b on o c	—	В	B – A	η-a	$HV \bullet V_3$	Yz11	ACCESSIBLE NEUTRAL ON
	A O C O C	a O		С	C – B	η– b			WYE WINDING
	в	۵ مر	С – В	A	A – C	a-c			NO
32	ABN	b c c	A – C	В	B – A	b–a	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yz11	ACCESSIBLE NEUTRAL
	A O C O C	a O	B – A	С	C – B	c – b			
	×۵	a Q	b-c	Α	A - N	a – b			
55	$C \sim N$	c/a	c – a	В	B-N	b-c	$\frac{2}{3} \cdot \frac{HV}{LV}$	ZNd0	
	с б _в — о в	с О́b b	a – b	С	C – N	c – a			
	Â,	a Q		A	A – B	a – b			NO
56	C A	c a	—	В	B – C	b-c	HV LV	Zd0	ACCESSIBLE NEUTRAL ON
	со _в ов	с О́ b		С	C – A	c–a			HIGH VOLTAGE
	Â,	bQpc	b-c	A	A – N	b-a			
57		a /c	c–a	В	B – N	c – b	HV LV	ZNd6	
	соов	У а	a-b	С	C – N	a – c			

	TRANSFORMER CONFIGURATION				WINDING TESTED				
SPEC TEST NO.	HIGH-VOLTAGE WINDING (H)	LOW-VOLTAGE WINDING (X)	EXT. JUMPER	PHASE	HIGH VOLTAGE WINDING	LOW VOLTAGE WINDING	CAL. TURN RATIO	VECTOR GROUP	NOTES
	В	a Qa	С – В	A	A – C	c – a			NO
28	AB	c O	A – C	В	B – A	a – b	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yz5	ACCESSIBLE
	A O C O C	٩٩٦	B – A	С	C – B	b-c			NEOTRAL
	в	• مر _د		A	A – C	η – a			
66	$A \stackrel{B}{\longrightarrow} N$	b ano a	—	В	B – A	$\eta - b$	$\frac{V_{H}}{V_{H}} \cdot \frac{V_{3}}{V_{3}}$	YNzn7	
	AO COC	bO <i>a</i>		С	С – В	η – c	۰x		
	В	^د مر _د		A	A – C	η – a			NO
29	A		—	В	B – A	η-b	$\frac{HV \bullet V_3}{LV}$	Yzn7	NEUTRAL ON
	AO COC	ъÓ		С	С – В	η– c			WYE WINDING
	B O	• مے _د	С-В	A	A– C	b – a			NO
30	A	b a a a	A – C	В	B – A	c – b	$\frac{HV}{LV} \cdot \frac{V_3}{2}$	Yz7	ACCESSIBLE NEUTRAL
	AO COC	٥Q	B – A	С	С – В	a – c			
	B Q	° Q _n		A	A – C	η – c	Vu •V3		
67			—	В	B – A	η-a	V _X	Yzn11	
	AO COC	۵Ö		С	С – В	η−b			
	в Q	• ~ _ _~		A	A – C	η – c			NO
31	B A		—	В	B – A	η-a	$\frac{HV \bullet V_3}{LV}$	Yz11	ACCESSIBLE NEUTRAL ON
	AO COC	aÓ		С	С – В	η– b			WYE WINDING
	в Q	۵ مړ	С – В	A	A – C	a – c	HV V3		NO
32	AN	b a c	A – C	В	B – A	b – a	LV 2	YZ11	NEUTRAL
		aQ	B – A	С	С – В	c – b			
	Â A	Å	b-c	A	A – N	a – b	2 HV	_	
55	C		с – а	В	B – N	b – c	3 • LV	ZNd0	
	со _в — ов	сооъ	a – b	С	C – N	c – a			
	A	Å		A	A – B	a – b	ну	- 10	
56	с щ		—	В	B-C	b – c	LV	Zd0	
	со _в — ов	с О <u></u> О b		С	C – A	c – a			HIGH VOLTAGE
	قر _م	^b	b – c	A	A – N	b – a	нν	7.1.10	
57			c – a	В	B – N	c – b	LV	ZNd6	
	со в	a	a-b	С	C – N	a – c			

Vanguard Instruments Company, Inc.

1520 S. Hellman Ave • Ontario, CA 91761 • USA

Phone: 909-923-9390 • Fax: 909-923-9391

www.vanguard-instruments.com

Copyright @ 2014 by Vanguard Instruments Company, Inc.

ATRT-01/01B S3 User's Manual • Revision 1.2 • March 18, 2014 • TA